Publications

Publications by categories in reversed chronological order.

2024

  1. CIKM
    Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing
    Han Xie, Li Xiong, and Carl Yang
    In Proceedings of the ACM International Conference on Information and Knowledge Management, 2024
  2. SPIE
    Federated learning for cross-institution brain network analysis (Oral, *Co-first Authors)
    Han Xie*, Yi Yang*, Hejie Cui, and Carl Yang
    In Medical Imaging 2024: Computer-Aided Diagnosis. SPIE, 2024
  3. PSB
    FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis
    Yi Yang, Han Xie, Hejie Cui, and Carl Yang
    In Proceedings of the Pacific Symposium on Biocomputing, 2024

2023

  1. ICDM-FedGraph
    Personalized Federated Learning for Graph Classification via Client Graph Learning
    Jiachen Zhou, Han Xie, and Carl Yang
    Workshop on Federated Learning with Graph Data: The IEEE International Conference on Data Mining, 2023
  2. KDD
    Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications (Oral)
    Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N. Ioannidis, Xiang Song, Qing Ping, Sheng Wang, Carl Yang, Yi Xu, Belinda Zeng, and Trishul Chilimbi
    In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023
  3. WWW
    Federated Node Classification over Graphs with Latent Link-type Heterogeneity (Oral)
    Han Xie, Li Xiong, and Carl Yang
    In Proceedings of the ACM Web Conference, 2023

2022

  1. CIKM-FedGraph
    Subgraph Federated Learning over Heterogeneous Graphs
    Ke Zhang, Han Xie, Zishan Gu, Xiaoxiao Li, Lichao Sun, Siu Ming Yiu, Yuan Yao, and Carl Yang
    Workshop on Federated Learning with Graph Data: The ACM International Conference on Information and Knowledge Management, 2022

2021

  1. NeurIPS
    Federated Graph Classification over Non-iid Graphs
    Han Xie, Jing Ma, Li Xiong, and Carl Yang
    In Proceedings of the Conference on Neural Information Processing Systems, 2021
  2. ICLRW/MLSysW
    Fedgraphnn: A Federated Learning System and Benchmark for Graph Neural Networks
    Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong, and  others
    Workshop on Distributed and Private Machine Learning: The International Conference on Learning Representations (ICLR-DPML). Workshop on Graph Neural Networks and Systems: The Conference on Machine Learning and Systems (MLSys-GNNSys), 2021

2019

  1. WABI
    Detecting Transcriptomic Structural Variants in Heterogeneous Contexts via the Multiple Compatible Arrangements Problem
    Yutong Qiu, Cong Ma, Han Xie, and Carl Kingsford
    In Proceedings of the International Workshop on Algorithms in Bioinformatics, 2019