
Federated Graph Classification over Non-IID Graphs

Han Xie, Jing Ma, Li Xiong, Carl Yang∗
Department of Computer Science, Emory University

{han.xie, jing.ma, lxiong, j.carlyang}@emory.edu

Abstract

Federated learning has emerged as an important paradigm for training machine
learning models in different domains. For graph-level tasks such as graph classifi-
cation, graphs can also be regarded as a special type of data samples, which can be
collected and stored in separate local systems. Similar to other domains, multiple
local systems, each holding a small set of graphs, may benefit from collaboratively
training a powerful graph mining model, such as the popular graph neural net-
works (GNNs). To provide more motivation towards such endeavors, we analyze
real-world graphs from different domains to confirm that they indeed share certain
graph properties that are statistically significant compared with random graphs.
However, we also find that different sets of graphs, even from the same domain or
same dataset, are non-IID regarding both graph structures and node features. To
handle this, we propose a graph clustered federated learning (GCFL) framework
that dynamically finds clusters of local systems based on the gradients of GNNs,
and theoretically justify that such clusters can reduce the structure and feature
heterogeneity among graphs owned by the local systems. Moreover, we observe
the gradients of GNNs to be rather fluctuating in GCFL which impedes high-quality
clustering, and design a gradient sequence-based clustering mechanism based on
dynamic time warping (GCFL+). Extensive experimental results and in-depth
analysis demonstrate the effectiveness of our proposed frameworks.

1 Introduction

Federated learning (FL) as a distributed learning paradigm that trains centralized models on decentral-
ized data has attracted much attention recently [28, 53, 25, 18, 17]. FL allows local systems to benefit
from each other while keeping their own data private. Especially, for local systems with scarce train-
ing data or lack of diverse distributions, FL provides them with the potentiality to leverage the power
of data from others, in order to facilitate the performance on their own local tasks. One important
problem FL concerns is data distribution heterogeneity, since the decentralized data, collected by
different institutes using different methods and aiming at different tasks, are highly likely to follow
non-identical distributions. Prior works approach this problem from different aspects, including
optimization process [25, 18], personalized FL [13, 6, 8], clustered FL [9, 15, 2], etc.

As more advanced techniques are developed for learning with graph data, using graphs to model
and solve real-world problems becomes more popular. One important scenario of graph learning is
graph classification, where models such as graph kernels [44, 34, 36, 45] and graph neural networks
[21, 43, 49, 46, 47, 48] are used to predict graph-level labels based on the features and structures
of graphs. One real scenario of graph classification is molecular property prediction, which is an
important task in cheminformatics and AI medicine. In the area of bioinformatics, graph classification
can be used to learn the representation of proteins and classify them into enzymes or non-enzymes.
For collaboration networks, sub-networks can be classified regarding the information of research
areas, topics, genre, etc. More applicable scenarios include geographic networks, temporal networks,
etc.

∗Corresponding author.
35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Since the key idea of FL is the sharing of underlying common information, as [23] discusses that
real-world graphs preserve many common properties, we become curious about the question, whether
real-world graphs from heterogeneous sources (e.g., different datasets or even divergent domains)
can provide useful common information among each other? To understand this question, we first
conduct preliminary data analysis to explore real-world graph properties, and try to find clues about
common patterns shared among graphs across datasets. As shown in Table 1, we analyze four typical
datasets from different domains, i.e., PTC_MR (molecular structures), ENZYMES (protein structures),
IMDB-BINARY (social communities), and MSRC_21 (superpixel networks). We find them to indeed
share certain properties that are statistically significant compared to random graphs with the same
numbers of nodes and links (generated with the Erdős–Rényi model [7, 10]). Such observations
confirm the claim about common patterns underlying real-world graphs, which can largely influence
the graph mining models and motivates us to consider the FL of graph classification across datasets
and even domains. More details and discussion about Table 1 can be found in Appendix A.
Table 1: Data analysis on important graph properties shared among real-world graphs across different
domains. For example, large Kurtosis values [32] indicate long-tail distribution of node degrees,
which is observed in ENZYMES, IMDB-BINARY, and MSRC_21; similar average shortest path lengths
are observed in PTC_MR, ENZYMES, and MSRC_21, although their actual graph sizes are rather
different; large CC are observed in ENZYMES, IMDB-BINARY, and MSRC_21 and large LC are
observed in almost all graphs.

Property kurtosis of degree distribution avg. shortest path length largest component size (LC, %) clustering coefficient (CC)

real random p-value real random p-value real random p-value real random p-value

PTC_MR (molecules) 2.1535 2.4424 0.9999 3.36 2.42 ∼ 0 100 82.68 ∼ 0 0.0095 0.1201 ∼ 0
ENZYMES (proteins) 3.0106 2.8243 0.0027 4.44 2.56 ∼ 0 98.24 97.69 0.2054 0.4516 0.1425 ∼ 0
IMDB-BINARY (social) 8.9262 2.2791 ∼ 0 1.48 1.54 ∼ 0 100 99.93 0.0023 0.9471 0.5187 ∼ 0
MSRC_21 (superpixel) 3.6959 2.9714 ∼ 0 4.09 2.81 ∼ 0 100 99.43 ∼ 0 0.5147 0.0655 ∼ 0

Although common patterns exist among graph datasets, we can still observe certain heterogeneity. In
fact, the detailed graph structure distributions and node feature distributions can both diverge due to
various reasons. To demonstrate this, we design and evaluate a structure heterogeneity measure and a
feature heterogeneity measure in different scenarios (c.f. Section 4.1). We refer to the graphs possibly
with significant heterogeneity in our cross-dataset FL setting as non-IID graphs, which concerns both
structure non-IID and feature non-IID, where naïve FL algorithms like FedAvg [28] can fail and
even backfire (c.f. Section 6.2). Moreover, as the heterogeneity varies from case to case, a dynamic
FL algorithm is needed to keep track of such heterogeneity of non-IID graphs while conducting
collaborative model training.

Due to the observations that the graphs in one client can be similar to those in some clients but not
the others, we get motivated by [2] and find it intuitive to consider a clustered FL framework, which
assigns local clients to multiple clusters with less data heterogeneity. To this end, we propose a novel
graph-level clustered FL framework (termed GCFL) through integrating the powerful graph neural
networks (GNNs) such as GIN [43] into clustered FL, where the server can dynamically cluster the
clients based on the gradients of GNN without additional prior knowledge, while collaboratively
training multiple GNNs as necessary for homogeneous clusters of clients. We theoretically analyze
that the model parameters of GNN indeed reflect the structures and features of graphs, and thus using
the gradients of GNN for clustering in principle can yield clusters with reduced heterogeneity of
both structures and features. In addition, we conduct empirical analysis to support the motivation of
clustered FL across heterogeneous graph datasets in Appendix A.

Although GCFL can theoretically achieve homogeneous clusters, during its training, we observe that
the gradients transmitted at each communication round fluctuate a lot (c.f. Section 5.1), which could
be caused by the complicated interactions among clients regarding both structure and feature hetero-
geneity, making the local gradients towards divergent directions. In the vanilla GCFL framework, the
server calculates a matrix for clustering only based on the last transmitted gradients, which ignores
the client’s multi-round behaviors. Therefore, we further propose an improved version of GCFL with
gradient-series-based clustering (termed GCFL+).

We conduct extensive experiments with various settings to demonstrate the effectiveness of our
frameworks. Moreover, we provide in-depth analysis on the capability of them on reducing both
structure and feature heterogeneity of clients through clustering. Lastly, we analyze the convergence
of our frameworks. The experimental results show surprisingly positive results brought by our novel
setting of cross-dataset/cross-domain FL for graph classification, where our GCFL+ framework can
effectively and consistently outperform other straightforward baselines.

2

2 Related works

Federated Learning Federated learning (FL) has gained increasing attention as a training paradigm
under the setting where data are distributed at remote devices and models are collaboratively trained
under the coordination of a central server. FedAvg was first proposed by [27] which illustrates the
general setting of an FL framework. Since the original FedAvg relies on the optimization by SGD,
data of non-IID distribution will not guarantee the stochastic gradients to be an unbiased estimation of
the full gradients, thus hurting the convergence of FL. In fact, multiple experiments [53, 25, 18] have
shown that the convergence will be slow and unstable, and the accuracy will degrade with FedAvg
when data at each client are statistically heterogeneous (non-IID). [53, 15, 12] proposed different data
sharing strategies to tackle the data heterogeneity problem by sharing the local device data or server-
side proxy data, which still requires certain public common data, whereas other studies explored
the convergence guarantee under the non-IID setting by assuming bounded gradients [39, 51] or
additional noise [19]. There are also works seeking to reduce the variance of the clients [26, 18, 25].
Furthermore, multiple works have been proposed to explore the connection between model-agnostic
meta-learning (MAML) and personalized federated learning [8, 4]. They aim to learn a generalizable
global model and then fine-tune it on local clients, which may still fail when data on local clients
are from divergent domains with high heterogeneity. Some personalized FL works [6, 24] studied
the bi-level problem of optimization which decouples the local and global optimization, but having
each client maintain its own model can lead to high communication cost among the clients and the
server. While personalization in the FL setting can address the client heterogeneity problem to some
extent, the clustered FL framework [33] can incorporate personalization at the group level to keep the
benefits of personalized FL and reduce the communication cost simultaneously.

Federated Learning on Graphs Although FL has been intensively studied with Euclidean data
such as images, there exist few studies about FL for graph data. [22] first introduced FL on graph data,
by regarding each client as a node in a graph. [3] studied the cross-domain heterogeneity problem in
FL by leveraging Graph Convolutional Networks (GCNs) to model the interaction between domains.
[29] studied spatio-temporal data modeling in the FL setting by leveraging a Graph Neural Network
(GNN) based model to capture the spatial relationship among clients. [5] proposed a generalized
federated knowledge graph embedding framework that can be applied for multiple knowledge graph
embedding algorithms. Moreover, there are several works exploring the GNNs under the FL setting:
[16, 54, 40] focused on the privacy issue of federated GNNs; [37] incorporated model-agnostic meta-
learning (MAML) into graph FL, which handled non-IID graph data while also preserving the model
generalizability; [52] studied the missing neighbor generation problem in the subgraph FL setting;
[38] proposed a computationally efficient way of GCN architecture search with FL; [11] implemented
an open FL benchmark system for GNNs. Most existing works consider node classification and link
prediction on graphs, which cannot be trivially applied to our graph classification setting.

3 Preliminaries

3.1 Graph Neural Networks (GNNs)

[42] provides a taxonomy that categorizes Graph Neural Networks (GNNs) into recurrent GNNs,
convolutional GNNs, graph autoencoders, and spatial-temporal GNNs. In general, given the structure
and feature information of a graph G = (V,E,X), where V , E, X denote nodes, links and node
features, GNNs target to learn the representations of graphs, such as a node embedding hv ∈ Rdv , or
a graph embedding hG ∈ RdG . A GNN typically consists of message propagation and neighborhood
aggregation, in which each node iteratively gathers the information propagated by its neighbors, and
aggregates them with its own information to update its representation. Generally, an L-layer GNN
can be formulated as

h(l+1)
v = σ(h(l)

v , agg({h(l)
u ;u ∈ Nv})),∀l ∈ [L], (1)

where h(l)
v is the representation of node v at the lth layer, and h(0)

v = xv is the node feature. Nv is
neighbors of node v, agg(·) is an aggregation function that can vary for different GNN variants, and
σ represents an activation function.

For a graph-level representation hG, it can be pooled from the representations of all nodes, as
hG = readout({hv; v ∈ V }), (2)

3

where readout(·) can be implemented as mean pooling, sum pooling, etc, which essentially aggregates
the embeddings of all nodes on the graph into a single embedding vector to achieve tasks like graph
classification and regression.

3.2 The FedAvg algorithm

McMahan et al. [28] proposed an SGD-based aggregating algorithm, FedAvg, based on the fact that
SGD is widely used and powerful for optimization. FedAvg is the first basic FL algorithm and is
commonly used as the starting point for more advance FL framework design.

The key idea of FedAvg is to aggregate the updated model parameters transmitted from local clients
and then re-distribute the averaged parameters back to each client. Specifically, given m clients
in total, at each communication round t, the server first samples a partition of clients {Si}(t). For
each client Si in {Si}(t), it trains the model downloaded from the server locally with its own data
distribution Di for Elocal epochs. The client Si then transmits its updated parameters w(t)

i to the
server, and the server will aggregate these updates by

w(t+1) =

m∑
i=1

|Di|
|D|

w
(t)
i , (3)

where |Di| is the size of data samples in client Si and |D| is the total size of samples over all clients.
After generating the aggregated parameters (the global model updates), the server broadcasts the new
parameters w(t+1) to remote clients, and at the (t+ 1) round clients use w(t+1) to start their local
training for another Elocal epochs.

4 The GCFL framework

4.1 Non-IID structures and features across clients

From Table 1 we notice that real-world graphs tend to share certain general properties across different
graphs, datasets and even domains, which motivates the graph-level FL framework. However, there
still exist differences when the detailed graph structures and node features are being considered. In
Table 2, we present the average pair-wise structure heterogeneity and feature heterogeneity among
graphs in a single dataset, a single domain, and across different domains. Specifically, for structure
heterogeneity, we use the Anonymous Walk Embeddings (AWEs) [14] to generate a representation
for each graph, and compute the Jensen-Shannon distance between the AWEs of each pair of graphs;
for feature heterogeneity, we calculate the empirical distribution of feature similarity between all
pairs of linked nodes in each graph, and compute the Jensen-Shannon divergence between the feature
similarity distributions of each pair of graphs.

As we can observe in Table 2, both graph structures and features demonstrate different levels of
heterogeneity within a single dataset, a single domain, and across different domains. We refer
to graphs with such structure and feature heterogeneity as non-IID graphs. Intuitively, directly
applying naïve FL algorithms like FedAvg on clients with non-IID graphs can be ineffective and
even backfiring. To be specific, structure heterogeneity makes it difficult for a model to capture the
universally important graph structure patterns across different clients, whereas feature heterogeneity
makes it hard for a model to learn the universally appropriate message propagation functions across
different clients. How can we leverage the shared graph properties among clients while addressing
the non-IID structures and features across clients?

4.2 Problem formulation

Motivated by our real graph data analysis in Tables 1 and 2, we propose a novel framework of Graph
Clustered Federated Learning (GCFL). The main idea of GCFL is to jointly find clusters of clients
with graphs of similar structures and features, and train the graph mining models with FedAvg among
clients in the same clusters.

Specifically, we are inspired by the Clustered Federated Learning (CFL) framework on Euclidean
data [33] and consider a clustered FL setting with one central server and a set of n local clients
{S1,S2, . . . ,Sn}. Different from the traditional FL setting, the server can dynamically cluster the

4

Table 2: Summary of the average heterogeneity of features and structures for some datasets. In
general, the structure heterogeneity increases from the settings of one dataset to across-dataset, and
to across-domain. However, the feature heterogeneity is more case-by-case, and the high variances
indicate that graphs could have large feature divergence even within the same dataset. Additionally, it
is not necessarily true that one dataset itself should be more homogeneous (e.g., IMDB-BINARY).

dataset IMDB-BINARY (social) COX2 (molecules) COX2 (molecules) COX2 (molecules) COX2 (molecules)
PTC_MR (molecules) ENZYMES (proteins) IMDB-BINARY (social)

avg. struc. hetero. 0.4406 (±0.0397) 0.3246 (±0.0145) 0.3689 (±0.0540) 0.5082 (±0.0399) 0.6079 (±0.0331)
avg. feat. hetero. 0.1785 (±0.1226) 0.0427 (±0.0314) 0.1837 (±0.1065) 0.1912 (±0.1000) 0.1642 (±0.1006)

clients into a set of clusters {C1,C2, . . .} and maintain m cluster-wise models. In our GCFL setting,
each local client Si owns a set of graphs Gi = {G1, G2, . . .}, where eachGj = (Vj , Ej , Xj , yj) ∈ Gi
is a graph data sample with a set of nodes Vj , a set of edges Ej , node features Xj , and a graph
class label yj . The task on each local client Si is graph classification that predicts the class label
ŷj = h∗k(Gj) for each graph Gj ∈ Gi, where h∗k is the collaboratively learned optimal graph
mining model for cluster Ck to which Si belongs. Our goal is to minimize the loss function
F (Θk) := ESi∈Ck

[f(θk,i;Gi)], for all clusters {Ck}. The function f(θk,i;Gi) is a local loss function
for client Si which belongs to cluster Ck. In the meantime, we also aim to maintain a dynamic cluster
assignment Γ(Si)→ {Ck} based on the FL process.

4.3 Technical design

GNNs are demonstrated to be powerful for learning graph representations and have been wildly used
in graph mining. More importantly, the model parameters and their gradients of GNNs can reflect
the graph structure and feature information (more details in Section 4.4). Thus, we use GNNs as the
graph mining model in our GCFL framework.

Specifically, our GCFL framework can dynamically cluster clients by leveraging their transmitted
gradients {∆θi}ni=1, in order to maximize the collaboration among more homogeneous clients and
eliminate the harm from heterogeneous clients. According to [33], if the data distribution of clients
are highly heterogeneous, the general FL that trains the clients together cannot jointly optimize all
their local loss functions. In this case, after some rounds of communication, the general FL will be
close to the stationary point, and the norm of clients’ transmitted gradients will not all tend towards
zero. Therefore, clustering clients is needed as the general FL approaches to the stationary point.
Here, we first introduce a hyper-parameter ε1 as a criterion to decide whether to stop the general FL
based on whether a stationary point is approached, that is,

δmean = ‖
∑
i∈[n]

|Gi|
|G|

∆θi‖ < ε1. (4)

In the meantime, if there exist some clients still with large norms of transmitted gradients, it means
that clients in the group are highly heterogeneous, and thus clustering is needed to eliminate the
negative influence among them. We then introduce the second criterion with a hyper-parameter ε2 to
split the clusters when

δmax = max(‖∆θi‖) > ε2 > 0. (5)

The GCFL framework follows a top-down bi-partitioning mechanism. At each communication round
t, the server receives m sets of gradients {{∆θi1}, {∆θi2}, . . . , {∆θim}} from clients in clusters
{C1,C2, . . . ,Cm}. For a cluster Ck, if δkmean and δkmax satisfy the Eqs. 4 and 5, the server will
calculate a cluster-wise cosine similarity matrix αk, and its entries are used as weights for building a
full-connected graph with nodes being all clients within the cluster. The Stoer–Wagner minimum cut
algorithm [35] is then applied to the constructed graph, which bi-partitions the graph and divides the
cluster Ck → {Ck1,Ck2}. The clustering mechanism based on Eqs. 4 and 5 can automatically and
dynamically determine the number of clusters along the FL, while the two hyper-parameters ε1 and
ε2 can be easily set through some simple experiments on the validation sets following [33].

For a client Si in cluster Ck, it tries to find θ̂k,i that is close to the real solution θ∗k,i =

arg minθi∈Θk
f(θk,i;Gi). At a communication round t, the client Sk transmits its gradient to the

server
∆θtk,i = θ̂tk,i − θt−1

k,i . (6)

5

Since the server maintains the cluster assignments, it can aggregate the gradients cluster-wise by

θt+1
k = θtk +

∑
i∈[nk]

∆θtk,i. (7)

4.4 Theoretical analysis

We investigate the problem of graph FL with multi-domain data distribution, and use the gradient-
based FL paradigm [27] to facilitate the model training. We theoretically analyze that the gradient-
based FL algorithm on GNNs can in principle reduce the structure and feature heterogeneity in
clusters, along with the task difference between data from different domains. We study two general
problems in order to prove that the gradients can reflect the feature, structure, and task information.

Definition 4.1 Let a function f : X → Y which maps from the metric space (X , d) to (Y, d′), the
function f is considered to have δ distortion if ∀u, v ∈ X , 1

δd(u, v) ≤ d′(f(u), f(v)) ≤ d(u, v).

Theorem 4.1 (Bourgain theorem [1]) Given an n-point metric space (X , d) and an embedding
function f as defined above, ∀u, v ∈ X , there exist an embedding mapped from (X , d) to Rk with the
distortion of the embedding being O(log n).

Problem 1. In GCFL which involves the communication of the gradients between graphs with
heterogeneous structures distributed among different clients, the structure and feature difference can
be captured by the GNN gradients.

For simplicity, we solve Problem 1 with the GNN of Simple Graph Convolutions (SGC) [41], through
the following two propositions.

Proposition 4.1 Given a graphG with fixed structure represented by the normalized graph Laplacian
L = D̃−

1
2 ÃD̃−

1
2 , feature represented with X , and an SGC f(L, X) = softmax(LKXΘ) with

weights Θ trained on graph G. If we have another graph G′ with different structure L′, the weight
difference ||Θ′ −Θ||2 is bounded with the structure difference.

Proposition 4.2 Given a graphG with fixed structure represented by the normalized graph Laplacian
L = D̃−

1
2 ÃD̃−

1
2 , feature represented with X , and an SGC f(L, X) = softmax(LKXΘ) with

weights Θ trained on graph G. If we have another graph G′ with different feature X ′, the weight
difference ||Θ′ −Θ||2 is bounded with the feature difference.

We prove proposition 4.1 and 4.2 in Appendix B. We use the Bourgain theorem to bound the difference
between embeddings generated with different graph structures/features, and prove that the feature
and structure information of a graph is incorporated into the model weights (gradients). By proving
that the model weights (gradients) are bounded with the structure/feature difference, we show that
the gradients will change with the structure and feature. This further justifies that our proposed
gradient based clustering framework GCFL is able to capture the structure and feature information.
In addition, we also study the following problem, which allows our GCFL framework to be further
extended to cross-task graph-level federated learning in the future.

Problem 2. The communicated gradients in GCFL can also capture the task heterogeneity.

Proposition 4.3 Given a graph G with structure represented by the normalized graph Laplacian
L = D̃−

1
2 ÃD̃−

1
2 , and feature represented with X , if trained with different tasks, we will get the

Simple SGC with bounded weights.

The proof of proposition 4.3 can be found in Appendix B.

5 GCFL+: improved GCFL based on observation sequences of gradients

5.1 Fluctuation of gradient norms

When observing the norm of gradients for each communication round in GCFL, as shown in Figure 1,
we notice that: 1) the norm of gradients continuously fluctuates; 2) different clients can have divergent

6

Figure 1: Norm of gradients versus communication round with six clients across datasets. Clients
with datasets colored the same are split to the same cluster.

scales of gradient norms. The fluctuation of gradient norms and different scales indicate that the
updating directions and distances of gradients for clients are diverse, which manifests the structure
and feature heterogeneity in our setting again. In our vanilla GCFL framework, the server calculates a
cosine similarity matrix based on the last transmitted gradients once the clustering criteria are satisfied.
However, with the observation that the norm of gradients fluctuates along the communication round,
albeit with the constraints of clustering criteria, GCFL clustering based on gradient-point could omit
important client behaviors and be misled by noises. For example, in Figure 1 (a), GCFL performs
clustering at round 119 based on the gradients at that round, which does not effectively find graphs
with lower heterogeneity.

5.2 Technical design

Motivated by these observations, we propose an improved version of GCFL, named GCFL+, which
conducts clustering by taking series of gradient norms into consideration. In the GCFL+ framework,
the server maintains a multi-variant time-series matrix Q ∈ R{n,d}, where n is the number of clients
and d is the length of a gradient series being tracked. At each communication round t, the server
updates Q by adding in the norm of gradients ‖∆θti‖ to Q(i, :) ∈ Rd and remove the out-of-date
one. GCFL+ uses the same clustering criteria as GCFL (Eqs. 4 and 5). If the clustering criteria are
satisfied, the server will calculate a distance matrix β in which each cell is the pair-wise distance
of two series of gradients. Here, we use a technique called dynamic time warping (DTW) [31] to
measure the similarity between two data sequences. For a cluster Ck, the server calculates its distance
matrix as

βk(p, q) = dist(Q(p, :), Q(q, :)), p, q ∈ idx({Si}), (8)

where idx({Si}) is the indices of all clients {Si} in cluster Ck. With the distance matrix β, the server
can perform bi-partitioning for clusters who meet the clustering criteria. As a result, in Figure 1 (b),
GCFL+ performs clustering at round 118 based on the gradient sequence of length 10, which captures
the longer-range behaviors of clients and effectively more homogeneous clusters.

6 Experiments

6.1 Experimental settings

Datasets We use a total of 13 graph classification datasets [30] from three domains including
seven molecule datasets (MUTAG, BZR, COX2, DHFR, PTC_MR, AIDS, NCI1), three protein datasets
(ENZYMES, DD, PROTEINS), and three social network datasets (COLLAB, IMDB-BINARY, IMDB-
MULTI), each with a set of graphs. Node features are available in some datasets, and graph labels are
either binary or multi-class. Details of the datasets are presented in Appendix C.

We design two settings that follow different data partitioning mechanisms, and the example real
scenarios of the two settings can be found in Appendix A. The first setting (i.e., single-dataset) is to
randomly distribute graphs from a single dataset to a number of clients, with each client holding a
distinct set of about 100 graphs, among which 10% are held out for testing. In the second setting
(i.e., multi-dataset), we use multiple datasets either from a single domain or multiple domains. Each
client holds a graph dataset, among which 10% are held out for testing. In the first setting, we use
NCI1, PROTEINS, and IMDB-BINARY from three domains and distribute them to 30, 10, 10 clients,
respectively. In the second setting, we create three data groups including MOLECULES which consists
of seven datasets from the molecule domain distributed into seven clients, BIOCHEM where we add
three datasets from the protein domain into MOLECULES and distribute them into 10 clients, MIX
where we add three datasets from the social domain into BIOCHEM and distribute them into 13 clients.

7

Baselines We use self-train2 as the first baseline to test whether FL can bring improvements to
each client through collaborative training. In self-train, each client firstly downloads the same
randomly initialized model from the server and then trains locally without any communications. Then
we implement two widely used FL baselines FedAvg [27] and FedProx [25], the latter of which can
deal with data and system heterogeneity in non-graph FL. For the graph classification model, we use
the same GIN [43] design, which represents the state-of-the-art GNN for graph-level tasks. We fix
the GIN architecture and hyper-parameters through all baselines in order to control the experiments
across different settings.

Parameter settings We use the three-layer GINs with hidden size of 64. We use a batch size of 128,
and an Adam [20] optimizer with learning rate 0.001 and weight decay 5e−4. The µ for FedProx is
set to 0.01. For all FL methods, the local epoch E is set to 1. The two important hyper-parameters ε1

and ε2 as clustering criteria vary in different groups of data, which are set through offline training for
about 50 rounds following [33]. We run all experiments for five random repetitions on a server with 8
24GB NVIDIA TITAN RTX GPUs.

6.2 Experimental results

Federated graph classification within single datasets Conceptually, clients in this setting are
more homogeneous. As can be seen from the results in Table 3, our framework can obviously
improve the performance of graph classification over local clients. For the NCI1 dataset distributed
on 30 clients, GCFL and GCFL+ achieve 13.27% and 14.75% performance gains over self-train
on average, and GCFL and GCFL+ help 10-14 more clients than FedAvg and FedProx who fail to
improve about half of clients. For the PROTEINS dataset on the total 10 clients, GCFL and GCFL+
achieve 7.29% and 7.81% average performance gains compared to self-train. For IMDB-BINARY
on 10 clients, FedAvg and FedProx fail to help 5/10 and 4/10 clients respectively, while both GCFL
and GCFL+ are able to improve all 10 clients. Overall, FedAvg can only help around half of the
clients, which demonstrates that FedAvg can be ineffective even for decenrtalized graphs from a
single dataset, because of the graph non-IIDness as shown in Table 2. In addition, in all three datasets,
the minimum performance gain of clients over self-train using GCFL or GCFL+ is obviously
larger than the minimum performance gain using FedAvg and FedProx. It indicates that even when
some clients do not improve from self-train by using GCFL or GCFL+, they can achieve more
comparable performance as self-train than using FedAvg and FedProx. These experimental
results demonstrate that our frameworks are effective on the single-dataset multi-client FL setting.

Federated graph classification across multiple datasets According to our data analysis in Tables
1 and 2, clients in such a setting are more heterogeneous. We conduct experiments with multiple
datasets in two settings: single domain (using the data group MOLECULES), and across domains
(using the data groups BIOCHEM and MIX). As can be seen from the results in Table 4, our frameworks
GCFL and GCFL+ can effectively improve the performance of clients with distinct datasets. The
results show 1.7%− 2.7% improvements of our frameworks compared to self-train. In all three
data groups, our GCFL+ framework can improve twice as many as clients than FedAvg, and it
achieves a ratio of 100% in MOLECULES to improve all clients’ performance. The FedAvg failed to
improve around 60% clients, which further demonstrates its ineffectiveness facing graph non-IIDness.
Additionally, the GCFL+ framework also outperforms GCFL. In MIX, although GCFL can achieve
the same ratio of improved clients as GCFL+, the GCFL+ framework has a much larger minimum
gain of clients than GCFL. It indicates that by GCFL+ few clients that cannot benefit from others will
not be degraded through the collaborating. These results indicate that graphs across datasets or even
across domains are able to help each other through proper FL, which is a surprising and interesting
start point for further study.

Effects of hyper-parameters ε1 and ε2 The hyper-parameter ε1 is a stopping criterion for check-
ing whether a general FL on the current set of clients is near the stationary point. Theoretically,
ε1 should be set as small as possible. The hyper-parameter ε2 is more dependent on the number
of clients and the heterogeneity among them. A smaller ε2 will make the clients more likely to be
clustered. When ε1 and ε2 are in the feasible ranges, their small variation can have little effect on the
performance because the clustering results would largely remain the same. When ε2 is set too large,

2We do not have a global model as baseline as datasets are from various domains and their tasks are divergent.

8

Table 3: Performance on the single-dataset-multi-client setting. We present the average accuracy and
minimum gain over self-train on all clients, as well as the ratio of clients which get improved.

Dataset (# clients) NCI1 (30) PROTEINS (10) IMDB-BINARY (10)

Accuracy average min gain ratio average min gain ratio average min gain ratio

self-train 0.6468(±0.053) — — 0.7213(±0.058) — — 0.7654(±0.057) — —

FedAvg 0.6474(±0.076) -0.1333 14/30 0.7490(±0.034) -0.0615 6/10 0.7596(±0.049) -0.0800 5/10
FedProx 0.6437(±0.072) -0.2400 16/30 0.7556(±0.036) -0.0923 7/10 0.7746(±0.048) -0.0600 6/10

GCFL 0.7326(±0.052) -0.0462 26/30 0.7739(±0.043) -0.0545 8/10 0.8256(±0.059) 0.0182 10/10
GCFL+ 0.7422(±0.053) -0.1143 28/30 0.7776(±0.037) -0.0154 9/10 0.8299(±0.052) 0.0167 10/10

Table 4: Performance on the multi-dataset-multi-client setting. Metrics are the same as Table 3.
Dataset (# domains) MOLECULES (1) BIOCHEM (2) MIX (3)

Accuracy average min gain ratio average min gain ratio average min gain ratio

self-train 0.7543(±0.017) — — 0.7129(±0.016) — — 0.7001(±0.034) — —

FedAvg 0.7524(±0.026) -0.0132 3/7 0.6944(±0.027) -0.1467 4/10 0.6886(±0.023) -0.1233 5/13
FedProx 0.7668(±0.032) -0.0054 5/7 0.7053(±0.026) -0.1000 5/10 0.6897(±0.026) -0.1367 5/13

GCFL 0.7661(±0.016) 0.0010 7/7 0.7172(±0.019) -0.0700 7/10 0.7056(±0.019) -0.1400 10/13
GCFL+ 0.7745(±0.030) 0.0010 7/7 0.7312(±0.031) -0.0300 8/10 0.7121(±0.021) -0.0233 10/13

the performance will be similar as applying a basic FL algorithm directly (i.e. with a single cluster).
When ε2 is set too small, more clusters with smaller sizes or even single clients will be generated.
We provide additional experimental results regarding the performance of GCFL and GCFL+ w.r.t.
varying ε1 and ε2 in Figure 2. As shown in the subfigures, some points that represent varying ε2

overlap for each ε1, which indicates that varying ε2 in a certain range w.r.t. the fixed ε1 leads to
similar performance. Looking at a ε2, within a certain range of ε1, we can find the performance often
fluctuating within a 0.01 variance. The results show that the performance of GCFL and GCFL+ are
not very sensitive to the changes of ε1 and ε2 in reasonable ranges.

6.3 Structure and feature analysis in clusters

We conduct an in-depth analysis to explore the clustering results of GCFL and GCFL+. As can be seen
in Figure 3, after being clustered by GCFL and GCFL+, the overall structure and feature heterogeneity
of clients’ graphs within clusters are reduced significantly compared to the original values, especially
for the multiple dataset setting (Figure 3c and 3d). For the one dataset setting (Figure 3a and 3b), since
features all fall in the same space, pairs of clients tend to have more homogeneous features. Therefore,
the feature heterogeneity only gets reduced slightly after clustering. Unlike feature heterogeneity, the
structure heterogeneity within clusters decreases significantly. In the setting of multiple datasets, as
shown in Figure 3c and 3d, both structure and feature heterogeneity decrease significantly, which
is intuitive since datasets across domains usually tend to have higher heterogeneity, as discussed in
4.1. We also look into the clusters and find that datasets from the same domains are more likely to
be clustered together, while datasets from different domains also constantly get clustered together
and benefit each other. For example, the clustering of GCFL+ corresponding to Figure 3d groups
two social networks COLLAB and IMDB-BINARY together with PROTEINS and also several molecules
datasets, and there is also a cluster of NCI1, DD, and IMDB-MULTI which are molecules, proteins and
social networks, respectively. These analysis manifests that domains of datasets can verify the sanity
of clusters to some extent, but one cannot solely rely on such prior knowledge to determine the optimal
clusters, which demonstrates the necessity of our frameworks with the ability of performance-driven
dynamic clustering along the process of FL.

0.05 0.06 0.07 0.08 0.09 0.10
1

0.74

0.75

0.76

0.77

0.78

Ac
cu

ra
cy

2
0.2
0.25
0.3
0.35
0.4
0.45
0.5

(a) GCFL

0.05 0.06 0.07 0.08 0.09 0.10
1

0.75

0.76

0.77

0.78

Ac
cu

ra
cy

2
0.2
0.25
0.3
0.35
0.4
0.45
0.5

(b) GCFL+

Figure 2: Performance of GCFL and GCFL+ on MOLECULES w.r.t varying ε1 and ε2.

9

0 1 2
cluster

0.0

0.2

0.4

he
te

ro
ge

ne
ity

G
C

FL

(a) oneDS: PROTEINS

0 1 2 3 4
cluster

0.0

0.2

0.4

he
te

ro
ge

ne
ity

G
C

FL
+

(b) oneDS: PROTEINS

0 1 3
cluster

0.0

0.2

0.4

he
te

ro
ge

ne
ity

G
C

FL

(c) multiDS: MIX

0 1 2 3
cluster

0.0

0.2

0.4

he
te

ro
ge

ne
ity

G
C

FL
+

(d) multiDS: MIX

Figure 3: Structure (blue) and feature (red) heterogeneity within clusters found by GCFL and GCFL+.
Dashed lines denote the heterogeneity over all clients before clustering.

0 20 40 60
Communication Round

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

 L
os

s

FedAvg
FedProx
GCFL
GCFL+

(a) oneDS: PROTEINS

0 20 40 60 80
Communication Round

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

 L
os

s

FedAvg
FedProx
GCFL
GCFL+

(b) multiDS: MOLECULES

0 20 40 60 80 100
Communication Round

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

 L
os

s

FedAvg
FedProx
GCFL
GCFL+

(c) multiDS: MIX

Figure 4: Average with standard deviation of the training curves of all clients.

6.4 Convergence analysis

We visualize the testing loss with respect to the communication round to show the convergence of
GCFL and GCFL+ compared with the standard federated learning baselines. Figure 4 shows the
training curves on two settings, which illustrates that GCFL and GCFL+ achieves similar convergence
rate as FedProx, which is the state-of-the-art FL framework dealing with non-IID Euclidean data.
We also notice that both GCFL, GCFL+ and FedProx can converge to a lower loss compared with
FedAvg, which corroborates our consideration of the non-IID problem in our setting.

6.5 More results in Appendix

In Table 3 and 4, we averaged the accuracy across all clients for presentation simplicity. To understand
the detailed performance by clients and clusters, we present different Violin plots in Appendix D.
Besides, we also show more results regarding various settings (overlapping clients, real vs. synthetic
node features, standardized gradient-sequence matrix in GCFL+, etc) in Appendix D.

7 Conclusion

In this work, we propose a novel setting of cross-dataset and cross-domain federated graph classifica-
tion. The techniques (GCFL and GCFL+) we develop allow multiple data owners holding structure
and feature non-IID graphs to collaboratively train powerful graph classification neural networks
without the need of direct data sharing. As the first trial, we focus on the effectiveness of FL in this
setting and have not carefully studied other issues such as data privacy, although it is intuitive to
preserve the privacy of clients by introducing an encryption mechanism (e.g. applying orthonormal
transformations), and to prevent from adversarial scenarios by clustering out the malicious clients.
Due to its evident motivations and proofs on the effective FL in a new setting, we believe this work
can serve as a stepping stone for many interesting future studies.

Acknowledgments and Disclosure of Funding

The work is partially supported by National Science Foundation (NSF) under CNS-2124104, CNS-
2125530, CNS-1952192, and IIS-1838200, National Institute of Health (NIH) under R01GM118609
and UL1TR002378, and the internal funding and GPU servers provided by the Computer Science
Department of Emory University.

10

References

[1] Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal
of Mathematics, 52 (1):46–52, 1985.

[2] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical cluster-
ing of local updates to improve training on non-iid data. In IJCNN, 2020.

[3] Debora Caldarola, Massimiliano Mancini, Fabio Galasso, Marco Ciccone, Emanuele Rodolà,
and Barbara Caputo. Cluster-driven graph federated learning over multiple domains. In CVPRW,
2021.

[4] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning
with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

[5] Mingyang Chen, Wen Zhang, Zonggang Yuan, Yantao Jia, and Huajun Chen. Fede: Embedding
knowledge graphs in federated setting. arXiv preprint arXiv:2010.12882, 2020.

[6] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning with
moreau envelopes. In NeurIPS, 2021.

[7] Paul Erdős and Alfréd Rényi. On random graphs. I. Publicationes Mathematicae., 6:290–297,
1959.

[8] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A
meta-learning approach. In NeurIPS, 2020.

[9] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework
for clustered federated learning. In NeurIPS, 2020.

[10] Edgar Gilbert. Random graphs. Annals of Mathematical Statistics., 30 (4):1141–1144, 1959.
[11] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang

He, Liangwei Yang, Philip S Yu, Yu Rong, Peilin Zhao, Junzhou Huang, Murali Annavaram,
and Salman Avestimehr. Fedgraphnn: A federated learning system and benchmark for graph
neural networks. arXiv preprint arXiv:2104.07145, 2021.

[12] Li Huang, Yifeng Yin, Zeng Fu, Shifa Zhang, Hao Deng, and Dianbo Liu. Loadaboost: Loss-
based adaboost federated machine learning on medical data. PLoS ONE, 15(4):e0230706,
2020.

[13] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong
Zhang. Personalized cross-silo federated learning on non-iid data. In AAAI, 2021.

[14] Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In ICML, 2018.
[15] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun

Kim. Communication-efficient on-device machine learning: Federated distillation and augmen-
tation under non-iid private data. In NIPSW, 2018.

[16] Meng Jiang, Taeho Jung, Ryan Karl, and Tong Zhao. Federated dynamic gnn with secure
aggregation. arXiv preprint arXiv:2009.07351, 2020.

[17] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends in Machine
Learning, 14 (1), 2019.

[18] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning.
In ICML, 2019.

[19] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on
identical and heterogeneous data. In AISTATS, 2020.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2017.

[21] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[22] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-to-peer
federated learning on graphs. arXiv preprint arXiv:1901.11173, 2019.

11

[23] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos. Realistic,
mathematically tractable graph generation and evolution, using kronecker multiplication. In
ECML-PKDD, 2005.

[24] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In ICML, 2021.

[25] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In Proceedings of Machine Learning
and Systems, 2020.

[26] Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei Cheng. Vari-
ance reduced local sgd with lower communication complexity. arXiv preprint arXiv:1912.12844,
2019.

[27] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, 2017.

[28] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.

[29] Chuizheng Meng, Sirisha Rambhatla, and Yan Liu. Cross-node federated graph neural network
for spatio-temporal data modeling. In KDD, 2021.

[30] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICMLW,
2020.

[31] Niels Lundtorp Olsen, Bo Markussen, and Lars Lau Rakêt. Simultaneous inference for mis-
aligned multivariate functional data. Journal of the Royal Statistical Society Series C, 67
(5):1147–1176, 2017.

[32] Karl Pearson. Das fehlergesetz und seine verallgemeinerungen durch fechner und pearson. a
rejoinder [the error law and its generalizations by fechner and pearson. a rejoinder]. Biometrika,
4 (1-2):169–212, 1905.

[33] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. TNNLS, pages 1–13,
2020.

[34] Nino Shervashidze and Karsten M. Borgwardt. Fast subtree kernels on graphs. In NIPS, 2009.

[35] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4), 1997.

[36] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. JMLR, 11:1201–1242, 2010.

[37] Binghui Wang, Ang Li, Hai Li, and Yiran Chen. Graphfl: A federated learning framework for
semi-supervised node classification on graphs. arXiv preprint arXiv:2012.04187, 2020.

[38] Chunnan Wang, Bozhou Chen, Geng Li, and Hongzhi Wang. Fl-agcns: Federated learning
framework for automatic graph convolutional network search. In ICML, 2021.

[39] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He,
and Kevin Chan. Adaptive federated learning in resource constrained edge computing systems.
IEEE Journal on Selected Areas in Communications, 37(6):1205–1221, 2019.

[40] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn: Federated
graph neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925,
2021.

[41] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. In ICML, 2019.

[42] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE TNNLS, 32(1):4–24, 2021.

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[44] Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In KDD, 2015.

12

[45] Carl Yang, Mengxiong Liu, Vincent W Zheng, and Jiawei Han. Node, motif and subgraph:
Leveraging network functional blocks through structural convolution. In ASONAM, 2018.

[46] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network
representation learning: A unified framework with survey and benchmark. In TKDE, 2020.

[47] Carl Yang, Jieyu Zhang, and Jiawei Han. Co-embedding network nodes and hierarchical labels
with taxonomy based generative adversarial nets. In ICDM, 2020.

[48] Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. In NIPS, 2019.

[49] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In NeurIPS, 2018.

[50] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In ICML,
pages 7134–7143, 2019.

[51] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In AAAI, 2019.

[52] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. Subgraph federated learning
with missing neighbor generation. In NeurIPS, 2021.

[53] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

[54] Jun Zhou, Chaochao Chen, Longfei Zheng, Huiwen Wu, Jia Wu, Xiaolin Zheng, Bingzhe Wu,
Ziqi Liu, and Li Wang. Vertically federated graph neural network for privacy-preserving node
classification. arXiv preprint arXiv:2005.11903, 2020.

13

A More Motivating Examples and Analysis

Additional explanations for Table 1 We provide two real examples of how graph properties can
decide important graph patterns as the signals for graph classifications. The first example is about
social networks. Among the graph properties, social networks (such as IMDB-BINARY shown in Table
1) have a significant high clustering coefficient (CC), which means they contain many triangles as a
graph pattern. This may be an important signal for effective graph classification, which is consistent
with commonly used social network classification methods such as motif-counting. On the other hand,
if a set of random graphs does not possess high CC, the prominent graph patterns might be some
subtrees or long edges, where the training of a graph classification model is not likely to facilitate the
capturing of triangles, and thus not beneficial for the classification of social networks. The second
example is about protein networks and superpixel networks (such as ENZYMES and MSRC_21 shown
in Table 1). ENZYMES is a protein dataset, in which a graph is an enzyme with secondary structure
elements as nodes and the links connect nodes if they are neighbors in space. MSRC_21 is a semantic
image processing dataset, in which nodes represent superpixels and links are constructed if two
superpixels are adjacent. Although the two datasets are from totally different domains, they are both
formed by spatial structures, which is reflected in Table 1 where the two datasets have very close
values regarding multiple properties (degree distribution, shortest path length, CC). For ENZYME, it
is known that the tertiary structure of proteins is essential and necessary for their biological activities,
and the tightly knit groups are important signals for classifying an enzyme into different catalyzed
levels. For MSRC_21, the environment information is also essential for identifying the superpixels or
describing objects in the images. Thus, there exists the case that two cross-domain datasets contain
certain significant graph patterns that correspond to different dataset-specific meanings and tasks, but
can be shared across datasets towards the training of more powerful graph models.

Figure 5: GIN Performance on
PROTEINS (proteins) federated av-
eragely trained with datasets from
the same or different domains.

Additional analysis for clustered FL With analysis from
Table 2, it shows significant statistical heterogeneity regarding
features and structures in graphs. To motivate clustered FL,
we conduct additional experiments regarding the connections
between such statistical heterogeneity and the power of GNNs.
Specifically, we use PROTEINS as one example dataset, and pair
it with other datasets from the same and different domains. We
focus on structure heterogeneity here and use one-hot degree
features in order to avoid the effects of feature heterogeneity.
We then train a GIN model with basic FedAvg on all pairs,
and analyze the GIN performance versus the structural hetero-
geneity as defined in our paper on PROTEINS in Figure 5. As
observed from Figure 5: (1) at first, the GNN on one graph
dataset (PROTEINS) can benefit from the federated learning on
another graph dataset, and that benefit becomes larger as the
structure heterogeneity between two graphs becomes larger (DD, ENZYMES, MUTAG, NCI1), which
clearly supports the benefit of cross-dataset/cross-domain graph federated learning. However, (2)
as the heterogeneity becomes too large, the performance of GNN starts to degenerate (PTC_MR,
COLLAB), which clearly supports our design of clustered federated learning. Our whole framework
is built to achieve a good trade-off between (1) and (2), which we achieved to some extent, but can
further improve on it in future studies.

Example real scenario for the single-dataset setting In this work, we use the public IMDB
datasets to mimic the real scenario for social networks. For example, TikTok as an emerging
video sharing platform has branches in different countries nowadays, among which direct data
sharing is illegal. However, the users in different countries naturally reside in social networks with
similar properties. It is then very viable to perform graph federated learning across branches in
different countries towards the training of more powerful graph learning models for tasks such as
group/community profiling.

Example real scenario for multi-dataset setting In this work, we synthesized the extreme setting
where each client holds data from totally different domains for experimental purposes, to establish
the benefit of cross-domain collaboration. A realistic scenario in a less extreme setting can be about
various types of apps on mobile phones. For example, different types of iPhone users may leverage

14

healthcare apps and social media apps and opt in their data collection. As a consequence, the two
apps will both hold some user data that may complement each other but cannot be directly shared
across the departments. Since Apple owns both departments, it is then easier for them to collaborate
through a federated learning framework.

B Missing Proofs in Section 4.4

B.1 Proof of Proposition 4.1

Assume the structure difference between graph G and G′ is bounded with
||L′ − L||22 = ||EL||22 ≤ εL, (9)

The difference between the original weights Θ and the weights trained on the new graph structure Θ′

is represented as

||Θ′ −Θ||22 = ||(L′X)−1Y ′ − (LX)−1Y ||22
= ||X−1(L′−1Y ′ − L−1Y)||22.

(10)

Given that ||L · L′||22 = ||L · (L + EL)||22 ≥ ||LEL||22. Let ||LEL||22 = δL, then we can get
||L′−1 − L−1||22 = ||EL−1 || ≤ εL

δL
.

Given the Bourgain theorem [50], the difference between the embedding Y and Y ′ is bounded with
||Y ′ − Y||22 = ||EY ||22 ≤ εY , (11)

The weight difference can then be bounded with

||Θ′ −Θ||22 ≤ ||X−1||22||(L−1 + EL−1)(Y + EY)− L−1Y ||22
= ||X−1||22||L−1EY + EL−1Y + EL−1EY ||22
≤ ||X−1||22

[
εY ||L−1||22 +

εL
δL
||Y ||22 +

εLεY
δL

]
.

(12)

With the trained SGC, the feature and graph structure is fixed as X and L. Thus the weight difference
is bounded with X and L.

B.2 Proof of Proposition 4.2

Assume the feature difference between graph G and G′ is bounded with
||X ′ −X||22 = ||EX ||22 ≤ εX , (13)

The difference between the original weights Θ and the weights trained on the new graph structure Θ′

is represented as

||Θ′ −Θ||22 = ||(LX ′)−1Y ′ − (LX)−1Y ||22 (14)

Given that ||X · X ′||22 = ||X · (X + EX)||22 ≥ ||XEX ||22. Let ||XEX ||22 = δX , then we can get
||X ′−1 −X−1||22 = ||EX−1 || ≤ εX

δX
.

Given the Bourgain theorem [50], the difference between the embedding Y and Y ′ is bounded with
||Y ′ − Y||22 = ||EY ||22 ≤ εY , (15)

The weight difference can then be bounded with

||Θ′ −Θ||22 = ||(X ′−1L−1Y ′ −X−1L−1Y ||22
= ||(X ′−1L−1(Y + EY)−X−1L−1Y ||22
= ||(X ′−1L−1Y +X ′−1L−1EY −X−1L−1Y ||22
= ||(X ′−1L−1Y −X−1L−1Y +X ′−1L−1EY ||22
= ||(X ′−1 −X−1)L−1Y +X ′−1L−1EY ||22
= ||EX−1L−1Y + (X + EX)−1L−1EY ||22
= ||EX−1L−1Y + (LX + LEX)−1EY ||22

≤ εX
δX
||L−1Y ||22 +

ε2XεY
δX
||(LX)−1||22 + εXεY ||(LX)−1||42

(16)

15

With the trained SGC, the feature and graph structure is fixed as X and L. Thus the weight difference
is bounded.

B.3 Proof of Proposition 4.3

The difference between the weights trained with different tasks can be written as

||Θi −Θj ||22 = ||(LX)−1(Yi − Yj)||22. (17)

With the Bourgain theorem, we have the transformed embedding bounded with

||Yi − Yj ||22 = ||EY ||22 ≤ εY . (18)

By substituting ||Yi − Yj ||22 = ||EY ||22, we have

||Θi −Θj ||22 = ||(LX)−1EY ||22
≤ εY ||(LX)−1||22

(19)

C Dataset Details

We provide details of the datasets we use in Table 5.

Table 5: The statistics of datasets.
dataset statistics dataset statistics

#graphs avg. #nodes avg. #edges #classes node features #graphs avg. #nodes avg. #edges #classes node features

MUTAG 188 17.93 19.79 2 original ENZYMES 600 32.63 62.14 6 original
BZR 405 35.75 38.36 2 original DD 1178 284.32 715.66 2 original
COX2 467 41.22 43.45 2 original PROTEINS 1113 39.06 72.82 2 original
DHFR 467 42.43 44.54 2 original COLLAB 5000 74.49 2457.78 3 degree
PTC_MR 344 14.29 14.69 2 original IMDB-BINARY 1000 19.77 96.53 2 degree
AIDS 2000 15.69 16.20 2 original IMDB-MULTI 1500 13.00 65.94 3 degree
NCI1 4110 29.87 32.30 2 original

D More Detailed Experiment Results

Violin plots instead of tables Figures 6, 7, and 8 show the detailed experiment results regarding
more various client settings including overlapped vs. non-overlapped data partitioning, original
vs. synthetic node features, standardized vs. non-standardized multi-variant time-series matrix in
GCFL+. Since we want to provide more detailed results by clients, we use violin plots to display the
distributions of performance gains of all clients compared to self-train, instead of the average
numbers in Tables 3 and 4. In Figure 6 and 7, each violin represents a distribution of all clients’
performance gain using one algorithm, and in Figure 8 each violin represents a distribution of all
clients’ performance gain on one dataset or data group. In Figures 6, 7, and 8, the blue left sides of
violins are corresponding to the results in the main tables 3 and 4.

Overlapping versus non-overlapping For distributing one dataset to multiple clients, we compare
the two settings of allowing overlapping (same graphs appearing multiple clients) and not. As can be
seen in Figure 6, our frameworks can also improve on overlapped clients.

FedAvg
FedProx

GCFL
GCFL+

0.2

0.0

0.2

0.4

Pe
rfo

rm
an

ce
 G

ai
n non-overlapped

overlapped

(a) oneDS: NCI1

FedAvg
FedProx

GCFL
GCFL+

0.2

0.0

0.2

0.4

Pe
rfo

rm
an

ce
 G

ai
n non-overlapped

overlapped

(b) oneDS: PROTEINS

FedAvg
FedProx

GCFL
GCFL+

0.2

0.0

0.2

Pe
rfo

rm
an

ce
 G

ai
n non-overlapped

overlapped

(c) oneDS: IMDB-BINARY

Figure 6: Distributions of performance gains of all clients with overlapped versus non-overlapped
data partitioning.

16

Original node features versus one-hot degree features Apart from the original node features, we
also use one-hot node degree features, in order to study the influence of node features. Figure (7a,
7b) and (7c, 7d) show the comparisons between original features and one-hot degree features on the
single-dataset (oneDS) setting and the multi-dataset (multiDS) setting, respectively. Overall, our
frameworks can consistently improve when using one-hot degree features. However, as in Figure 7c,
the performance gains decreased when using only one-hot node degrees, which can be because of the
decease of feature heterogeneity.

FedAvg
FedProx

GCFL
GCFL+

0.2

0.0

0.2
Pe

rfo
rm

an
ce

 G
ai

n original
degree

(a) oneDS: NCI1

FedAvg
FedProx

GCFL
GCFL+

0.2

0.0

0.2

Pe
rfo

rm
an

ce
 G

ai
n original

degree

(b) oneDS: PROTEINS

FedAvg
FedProx

GCFL
GCFL+

0.05

0.00

0.05

Pe
rfo

rm
an

ce
 G

ai
n original

degree

(c) multiDS: MOLECULES

FedAvg
FedProx

GCFL
GCFL+

0.1

0.0
Pe

rfo
rm

an
ce

 G
ai

n original
degree

(d) multiDS: MIX

Figure 7: Distributions of performance gains of all clients using original node features versus one-hot
degree features on the oneDS (top) and multiDS (bottom) settings.

Standardized versus non-standardized multi-variant time-series matrix For the GCFL+ frame-
work, we compared the performance gains of clients using the standardized or non-standardized
multi-variant time-series matrix Q ∈ R{n,d}. By standardization, only the trends of gradients’
fluctuation are considered and the scales are ignored. The standardization step is performed before
calculating the distance matrix β as

Q′(i, :) = Q(i, :)/std(Q(i, :)), i = 0, 1, . . . , n. (20)

As shown in Figure 8, the average performance gains of standardization and non-standardization are
similar.

PROTEINS
NCI1

IMDB-BINARY

0.0

0.2

Pe
rfo

rm
an

ce
 G

ai
n

non-standardized
standardized

(a) oneDS

MOLECULES
BIOCHEM MIX

0.1

0.0

0.1

Pe
rfo

rm
an

ce
 G

ai
n

non-standardized
standardized

(b) multiDS

Figure 8: Distributions of performance gains of all clients using standardized gradient-sequence
matrix versus non-standardized gradient-sequence matrix in GCFL+ on the oneDS and multiDS
settings.

17

	Introduction
	Related works
	Preliminaries
	Graph Neural Networks (GNNs)
	The FedAvg algorithm

	The GCFL framework
	Non-IID structures and features across clients
	Problem formulation
	Technical design
	Theoretical analysis

	GCFL+: improved GCFL based on observation sequences of gradients
	Fluctuation of gradient norms
	Technical design

	Experiments
	Experimental settings
	Experimental results
	Structure and feature analysis in clusters
	Convergence analysis
	More results in Appendix

	Conclusion
	More Motivating Examples and Analysis
	Missing Proofs in Section 4.4
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3

	Dataset Details
	More Detailed Experiment Results

