Check for
Updates

Graph-Aware Language Model Pre-Training on a Large Graph
Corpus Can Help Multiple Graph Applications

Han Xie"
Emory University
Atlanta, GA, USA

han.xie@emory.edu

Vassilis N. Ioannidis
Amazon Search Al
Santa Clara, CA, USA
ivasilei@amazon.com

Carl Yang
Emory University
Atlanta, GA, USA

j.carlyang@emory.edu

Da Zheng
Amazon AWS Al
Santa Clara, CA, USA
dzzhen@amazon.com

Xiang Song
Amazon AWS Al
Santa Clara, CA, USA
xiangsx@amazon.com

Yi Xu
Amazon Search Al
Seattle, WA, USA
yxXaamzn(@amazon.com

ABSTRACT

Model pre-training on large text corpora has been demonstrated
effective for various downstream applications in the NLP domain.
In the graph mining domain, a similar analogy can be drawn for
pre-training graph models on large graphs in the hope of benefit-
ing downstream graph applications, which has also been explored
by several recent studies. However, no existing study has ever
investigated the pre-training of text plus graph models on large het-
erogeneous graphs with abundant textual information (a.k.a. large
graph corpora) and then fine-tuning the model on different related
downstream applications with different graph schemas. To address
this problem, we propose a framework of graph-aware language
model pre-training (GALM) on a large graph corpus, which incor-
porates large language models and graph neural networks, and a
variety of fine-tuning methods on downstream applications. We
conduct extensive experiments on Amazon’s real internal datasets
and large public datasets. Comprehensive empirical results and
in-depth analysis demonstrate the effectiveness of our proposed
methods along with lessons learned.

CCS CONCEPTS

« Information systems — Language models; Data mining; Task
models; « Computing methodologies — Unsupervised learn-
ing; Learning latent representations; Neural networks.

*This work was done during Han Xie’s internship at Amazon, USA.
fWork done while at Amazon.

@ @ This work is licensed under a Creative Commons Attribution-
BY NC ND NonCommercial-NoDerivs International 4.0 License.

KDD °23, August 6-10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599833

5270

Jun Ma'
Walgreens Al Lab
Bellevue, WA, USA
jun.ma@walgreens.com

Qing Ping
Amazon Search Al
Palo Alto, CA, USA

pingging@amazon.com

Belinda Zeng
Amazon Search Al
Seattle, WA, USA
zengb@amazon.com

Houyu Zhang
Amazon Search Al
Seattle, WA, USA
zhanhouy@amazon.com

Sheng Wang
Amazon Scholar
Seattle, WA, USA

swanguw(@amazon.com

Trishul Chilimbi

Amazon Search Al
Seattle, WA, USA
trishulc@amazon.com

KEYWORDS

Large Language Model; Pre-Training and Fine-Tuning; Graph Neu-
ral Network; Heterogeneous Graph

ACM Reference Format:

Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N. Ioannidis, Xiang
Song, Qing Ping, Sheng Wang, Carl Yang, Yi Xu, Belinda Zeng, and Trishul
Chilimbi. 2023. Graph-Aware Language Model Pre-Training on a Large
Graph Corpus Can Help Multiple Graph Applications. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23), August 6—-10, 2023, Long Beach, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3580305.3599833

1 INTRODUCTION

The standard process of pre-training a large language model (LM)
on abundant text data and fine-tuning the pre-trained model on dif-
ferent application data has achieved significant success and brought
revolutionary advancement to the domain of natural language
processing. With the massive corpus and powerful computation
resources for pre-training, the pre-trained LMs based on power-
ful transformer architectures emerge and derive various families
[23], including auto-regressive LMs like GPT [26] and GPT-2/3/4
[1, 24, 27], masked LMs like BERT [4], RoBERTa [20], and XL-
Net [39], and encoder-decoder LMs like BART [18] and T5 [28].
These pre-trained LMs can be directly fine-tuned on users’ data
for downstream applications to achieve higher utility and/or effi-
ciency. However, for enterprises that usually preserve their own
in-domain data and target diverse applications, existing LMs that
are pre-trained on text in the general domain can be less useful.
Thus, for an enterprise with sufficient in-domain data, it is practical
and desirable to pre-train its own large LMs, such as by further
training existing general LMs.

In addition to pure text data, graph-structured data have been
used increasingly in the industry to model the complex real-world
relations between entities. For example, in a recommender system,
users and items can be represented as two types of nodes in a graph,
and user behaviors (e.g., purchases, likes) can be represented as

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F&data=05%7C01%7Chan.xie%40emory.edu%7C060ad7178d0c42b5937508db72763515%7Ce004fb9cb0a4424fbcd0322606d5df38%7C0%7C0%7C638229625133097381%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=WzCGg0oznWHMBVZYc9gi5qL3O%2B7fJbybOt7CKn3lsLk%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F&data=05%7C01%7Chan.xie%40emory.edu%7C060ad7178d0c42b5937508db72763515%7Ce004fb9cb0a4424fbcd0322606d5df38%7C0%7C0%7C638229625133097381%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=WzCGg0oznWHMBVZYc9gi5qL3O%2B7fJbybOt7CKn3lsLk%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F&data=05%7C01%7Chan.xie%40emory.edu%7C060ad7178d0c42b5937508db72763515%7Ce004fb9cb0a4424fbcd0322606d5df38%7C0%7C0%7C638229625133097381%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=WzCGg0oznWHMBVZYc9gi5qL3O%2B7fJbybOt7CKn3lsLk%3D&reserved=0
https://doi.org/10.1145/3580305.3599833
https://doi.org/10.1145/3580305.3599833
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599833&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

various types of edges connecting nodes, forming a large heteroge-
neous network [38]. Thus, realistic applications such as predicting
whether a customer would buy an item can be modeled as graph
downstream tasks, e.g., link prediction. With the advancement of
graph representation learning techniques, graph neural network
(GNN) and its variants become popular and aid in the learning of
graph-based applications, such as GCN [17], GraphSAGE [7], GIN
[37], and GAT [2] for homogeneous graphs with single node and
edge types, and HGT [11], HAN [36], RGCN [31], and RGAT [2]
for heterogeneous graphs with multiple node and edge types.

In real scenarios, it is a common practice for an enterprise or
an institute to own a domain-specific graph corpus, that is, a mas-
sive graph with abundant text information as node features. In
the meantime, different departments collect specific graph corpora
due to the diverse commercial or research needs. For example, in
Amazon, users’ interactions with different entities (e.g., products,
queries, ads) can be collected through the e-commerce engine and
used to construct a large graph corpus, which is a heterogeneous
graph with rich text information (e.g., users’ reviews, products’ de-
scriptions). Meanwhile, different departments that develop diverse
applications with different commercial objectives (e.g., predicting
the clickthrough rate for advertising, semantic matching between
queries and products), collect data based on their unique data access
and application need and construct the corresponding application
graph corpus that can include both overlapping and distinct parts
from the large graph corpus. Considering utility and efficiency ben-
efits, it meets the real need of enterprises to leverage the large graph
corpus to facilitate various applications. Another example can be
found in the biomedical domain, where large-scale protein-protein
interaction networks might be massively measured on model organ-
isms such as mouse and yeast. However, experimentally deriving
large-scale networks on other species could be technically challeng-
ing and expensive. As a result, there is a pressing need to pre-train
models on large well-studied species and then transfer them to
small-scale networks on other species. Motivated by the successes
of LM pre-training on large text corpora, the emerging data re-
source of large graph corpora, and the need of facilitating multiple
downstream graph-based applications, there is an urge for method-
ology design that can effectively utilize the large graph corpora to
promote the performance of various downstream applications.

In this work, we focus on a setting where there exists a large
graph corpus with multiple types of entities and relations along
with their rich textual information, and various downstream graph-
based applications whose relation types can be both overlapping
and distinct from the large graph corpus. To enable this, we consider
the technical challenges of how to learn a powerful model on a large
graph corpus, and how to transfer it to downstream application
graphs. Regarding learning on a graph corpus, previous studies
leverage techniques that combine LMs and GNNs, which usually
encode the text information through LMs and feed the outputs of
LMs to GNNs as node features, such as TextGNN [43], AdsGNN
[19], and GIANT [3]. However, these methods are designed for
specific scenarios or focus only on downstream applications. As for
transferring the knowledge of large graphs, most previous studies
focus on pre-training and fine-tuning over the same graphs for
different tasks, e.g., designing self-supervised training methods
without labeled data [12, 15], or transferring to the applications

5271

Han Xie et al.

query/ roduct = \
~Nm 4‘3""?"" — me
%‘\ 1 LRt - |
Pl m =
—m 'E // 11 o
A 7 \
i W a P
~.
/ \ (10
(a) A large graph corpus (b) Three application graphs

Figure 1: Toy examples of a large graph corpus and applica-
tion graphs. The large graph covers most of the nodes in applications,
while the edge types of applications can be distinct from the large graph.

that have the same graph schema (node and edge types) as the
pre-training graph, e.g., using external knowledge graphs [30, 41].
Thus they are inapplicable to the setting of transferring information
across graphs with diverse graph schemas. Moreover, these works
concentrate on the transfer learning of GNNs which neglect the
impact of text-based node features on graph topology and vice versa.
To the best of our knowledge, there exists no prior attempt at model
pre-training on a large graph corpus and applying the pre-trained
model to multiple applications, where the tasks of applications can
vary and the graph schemas of applications can differ from the
large pre-training graph.

We approach the key problem from two perspectives, pre-training
a powerful model on a large graph corpus to capture the informa-
tion that can maximize its utility towards a variety of applications,
and fine-tuning the pre-trained model on various applications to
further enhance its performance. Our main contributions include:

e We propose a framework of Graph-Aware LM pre-training on a
large graph corpus, a.k.a. GALM, which can encode knowledge
in the large graph corpus into LMs under the consideration of
entity relations in graphs.

e We propose various methods for fine-tuning the pre-trained
GALM on applications w.r.t. different modules of GALM.

o We simulate a large graph corpus and two applications from a
large public dataset; the comprehensive experiments on Ama-
zon internal datasets and the public datasets demonstrate the
effectiveness of our proposed pre-training/fine-tuning strategies.

e We provide insights into the empirical results, as well as addi-
tional analysis and discussion over the lessons learned.

In the rest of this paper, we discuss related works in Section 2.
Section 3 introduces preliminaries including the problem formu-
lation, the prevalent yet new concept of large graph corpus, and
multiple related real applications that are deployed in Amazon. We
then introduce the backbone model LM+GNN of our framework
in Section 4. Sections 5 and 6 illustrate our proposed pre-training
framework and fine-tuning strategies, respectively, and include em-
pirical results and insights. Lastly, we provide an overall comparison
and additional analysis in Section 7.

2 RELATED WORKS
2.1 Language Modeling with Graphs

Learning on graphs has attracted significant attention recently
due to its capability of leveraging both node features and topo-
logical information to better model real-world applications. For

Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications

language modeling, introducing the topological information that
either models the real interactions (e.g., human behaviors) or se-
mantic linkages (e.g., knowledge graphs, context) helps to overcome
the inadequacy of utilizing solely pure semantic information. For
example, [16, 32, 35, 41, 42] leverage KGs as additional training
signals to guide the learning of LMs, [19, 43] use behavior-graph
augmented language modeling that is applied for sponsored search,
and [22, 40] construct graphs based on the raw text and represent
the tokens or words as nodes.

Graph neural networks (GNNs) are widely-used techniques in
graph representation learning, and some previous works of learning
LMs with graphs employ GNNs to aggregate information that is
propagated along the graph topology. However, how LMs and GNNs
are combined can vary. For example, [22] encodes tokens using a
vanilla neural LM and introduces the global context by constructing
a heterogeneous graph with tokens as nodes and connecting tokens
to their retrieved neighbors, which essentially stacks the GNNs on
top of the vanilla LM without fine-tuning the LM. The LM performs
the role of a static text encoder in this way of combining LMs and
GNN:Gs. [19, 43] both focus on sponsored search, of which [19] first
fine-tunes the pre-trained LMs by behavior-graph related tasks but
still uses the fine-tuned LMs as static text encoders to generate
fixed node features as the input into GNNs, while [43] leverages
the behavior-graph as a complementary information and co-trains
the parameters of LMs and GNNs. [13] proposes a multi-step fine-
tuning framework for LMs that can jointly train LMs and GNNs
effectively and efficiently.

Different from the prior works, this work is generic and not
application-specific, and not restricted to specific graph schema
such as KGs. More importantly, it focuses on LM pre-training on
a large graph corpus with graph information included and fine-
tuning the pre-trained model on multiple applications where the
edge schema can be distinct from the pre-training large graph.

2.2 Pre-training on Graphs

Many previous studies of pre-training on graphs concentrate on
encoding the graph-level information into GNNs given enormous
small graphs, especially in the molecule domain (e.g., [9, 29, 34]).
Apart from the graph-level pre-training, there emerge works study-
ing pre-training on a large graph, which aim to address the problem
of insufficient labels by self-supervised learning on the same graph
(e.g., [10, 12, 15]), or to tailor the gap of optimization objectives
and training data between self-supervised pre-training tasks and
downstream tasks (e.g., [8, 21]), or to pre-train on a large graph to
capture the transferable information for downstream application
graphs (e.g., [5, 14, 21, 25, 44]). Our setting is more proximate to
the last category.

Among these works concerning transfer learning across graphs,
[44] provides theoretical analysis for the transferability of GNNs
and proposes a GNN transfer learning framework with ego-graph
information maximization, [21] proposes a self-supervised pre-
training strategy that learns fine-tuning during pre-training with
a dual adaption mechanism at both node and graph levels, [25]
learns a universal and generic GNN model that can be applied to
data from diverse domains and different tasks using contrastive
learning (subgraph instance discrimination). However, all these

5272

KDD ’°23, August 6-10, 2023, Long Beach, CA, USA

works focus on homogeneous graphs. [14] first studies the pre-
training of GNN on a large-scale heterogeneous graph with both
node- and schema-level contrastive learning tasks that can be ap-
plied to in-domain new datasets. [5] proposes a generic pre-training
framework for heterogeneous graphs by transforming the neigh-
bors into sequences and adopting deep bi-directional transformers
to encode them, under the supervision of masked node modeling
and adjacent node prediction. However, these works concentrate
on transferring across graphs with the same graph schema, while
in our setting the application graphs can preserve new edge types
distinct from the pre-training graph, which can enrich the set of ap-
plicable downstream tasks (e.g., predicting the new edge type) and
introduce specific features to applications by involving new edge
types. Moreover, most of the previous studies on pre-training with
graphs omit the relationship between the raw text and graph topol-
ogy and use node features that are generated in a graph-agnostic
manner. In this work, we focus on leveraging graphs and GNNs to
facilitate the information capturing of LMs on a large graph corpus.

3 PRELIMINARIES

3.1 Problem Formulation

Given a large-scale heterogeneous graph with text information
(the large graph corpus) G, and multiple downstream application
heterogeneous graphs G = {g;}}_,, the goal is to leverage G to
improve tasks on g;.

We denote the large graph corpus as G. = (V., Ec, Ac, Re, ¢c, Ye),
and an application graph as g; = (V;, E;i, Ai, Ri, i, ¥i). Ve and V;
are the node sets of G. and g;, respectively; |Vc| > |V;| and |Vc N
Vil/IVi| < 1. The node sets V; and V; are mapped by the node-type
mapping functions ¢. : Vo — Ac and ¢; : V; — A;, respectively,
where A. and A; are the sets of node types, and A; C Ac. E¢ and E;
are the edge sets of G and g;, which are mapped by the edge-type
mapping functions ¢ : Ec — Rc and ¢; : E; — R;, respectively.
R. and R; are the sets of edge types of G. and g;, and they can be
different from each other, i.e., 0 < |R. N R;| < |R¢|.

To leverage the large graph corpus G, we pre-train a model that
consists of an LM (or multiple LMs) and a multi-relational GNN
on G using unsupervised learning, and aim to find the optimized
model . by minimizing the empirical loss

0; = argmin L¢ (Fc(0¢;Ge)) . M

In various scenarios, the number of LMs employed for modeling
different types of nodes can vary. For example, previous knowledge
shows that utilizing separate LMs to model different entities in
e-commerce scenarios is effective [13, 19, 43]. Herewith, we employ
different LMs for query and product entities present in e-commerce
data in this work.

The model O, is then fine-tuned on multiple tasks applied on
G to improve their performance. For an application graph g;, we
initialize its model ©; by ©f, and then fine-tune ®; by minimizing
its empirical loss

(—);‘ = argmin L; (F;(©;;gi)) . @)

3.2 The Large Graph Corpus

The large graph corpus is a prevalent yet novel concept in this work.
Generally, it is a heterogeneous graph in which nodes preserve text

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

information and different types of edges can connect the same
pairs of nodes. A toy example of a large graph corpus is shown in
Figure 1a, that is, a user behavior graph from a shopping engine
which includes the common user behaviors (e.g., “add”, “click”,
“like”, and “purchase”) that happen between user-inputs “query” and
items “product”. For example, the relation “add” between queries
and products represents that users add items to their shopping carts
under the queries, and the relation “like” represents that users show
preferences for certain products and are more inclined to buy them.
While the user behaviors are between the two node types of “query”
and “product”, the large graph corpus can preserve more relation
types that can be either between different node types or among
the same node type. There are no specific constraints on the graph
schema of a large graph corpus.

Regarding what downstream applications can benefit from the
pre-training on a large graph corpus, it can be related to the node
and relation types of the large graph corpus. From the perspective
of node schema, the large graph corpus can support all applications
whose task-required node types are a subset of its node types. How-
ever, it is more rigorous to consider the extent of relevance between
the relation types of the large graph corpus and the relation types
of downstream applications. In principle, it is not necessary for the
relation types of applications to exactly be a subset of the relation
types of the large graph corpus. As long as the information gathered
through the relations in the large graph corpus is useful for the
applications, it should be beneficial to pre-train a model on the large
graph corpus. The nodes in the large graph corpus are associated
with abundant text information that can be highly complicated,
thus, we utilize large LMs to encode the text information. Herewith,
we expect that the pre-trained LMs with rich relational information
on the large graph corpus can generalize to accommodate a variety
of downstream applications with different tasks.

3.3 Multiple Applications

We employ various applications with different tasks to investigate
how the pre-training on a large graph corpus aids in downstream ap-
plications. Figure 1b shows example graphs of several applications.
It is usual that applications preserve a small number of relation
types (e.g., one or two), and the relation types can be distinct from
those of the large graph corpus. For empirical studies, we form a
dataset group Amazon-PQ using Amazon internal datasets, which
consists of a large graph corpus for pre-training, and three real
applications, Search-CTR, ESCvsI, and Query2PT.

Search-CTR. It is an application to predict whether a user/query
would click an advertised product or not, which can be modeled
as a link prediction task. Its application graph contains node types
“product” and “query”, and an edge type “ads-click” which is defined
as the click-through rate and differs from the common “click”.

ESCvslI. It is an application for the query-product matching prob-
lem. Its graph contains node types “query” and “product” and an
edge type “match”. Edges are originally labeled as E (exact), S (sub-
stitute), C (complement), and I (irrelevant); however, the task in
this work is to classify the edges connecting query-product pairs
into one of the two classes, E/S/C and I, i.e., edge classification.

Query2PT. It is an application to predict the types of products
that are mapped to a query. Its graph contains the edge type “click”

5273

Han Xie et al.

input graph raw text embeddings
N
T 2 e
£ F-o[w]-B o
\ —
Doz : .

4 -
: |
GNN
L V= “— | aggregator

Figure 2: The backbone model LM+GNN. Nodes in different colors
belong to different node types. The raw text is encoded using an LM or
multiple LMs w.r.t. different node types. The output of LMs is then encoded
by a GNN aggregator based on the graph topology and finally decoded for
a graph-based task.

and node types “query” and “product”, and the task of the applica-
tion is to classify the “query” nodes by multiple labels (out of 403
classes), i.e., multi-label node classification.

The data statistics of Amazon-PQ are shown in Table 6 in Appen-
dix A.1. The large graph corpus and application graphs are strate-
gically down-sampled from the original Amazon internal datasets,
which are then aggregated and anonymized, and are not represen-
tative of real product traffic. The sampling details are discussed in
Section 7.1.2.

4 LM+GNN: THE BACKBONE OF OUR
PROPOSED FRAMEWORK

The backbone model of our framework for learning on graph cor-
pora is defined as LM+GNN, which consists of one or more LMs
for encoding text information and a GNN aggregator for informa-
tion aggregation. Figure 2 shows the pipeline of LM+GNN. Given
a graph corpus as the input, LM+GNN employs one or multiple
LMs as text encoder(s) for nodes. Through the LMs, the generated
embeddings are then attached to the graph topology as the input of
a GNN aggregator, and the output is passed through a task-specific
decoder for supervision.

The LMs here can be adapted to various pre-trained large lan-
guage models. We implement the LMs with BERT in this work
because it is well-studied in most existing related works and widely
applied in the industry.

The GNN aggregator can also be adapted to different GNN vari-
ants, such as GCN and GAT for graphs with only one type of
relation, and RGCN and RGAT for graphs with multiple types of
relations. The GNN aggregator in the pipeline aids in the prop-
agation of information based on the graph topology. Regarding
multi-relational graphs, which are more generic and adopted in
this work, we implement the GNN aggregators with two common
relational GNNs, RGCN [31] and RGAT [2]. The propagation rule
of RGCN is

B Z Z Z Lgﬁl)hz()l)_'_@él)h,(ll) ’

C
reRoeNy, %

®)

Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications

Forward

E encode text information graph-aware supervision

[]]

g B M .)j ?

,./7‘. = < >_ —_— _ 5 -
\ r =
E @) &5 =
backpropagate gradients to f(6,
G, gate g JAC) Ly

Backward

(a) A GNN-free GALM

e

KDD ’°23, August 6-10, 2023, Long Beach, CA, USA

graph-aware supervision

backpropagate gradients to f(©gyy)

GNN) —
- I aggregator] - | de(:oder] —t ‘_.\,,. V

encode text information
©)

(2) warming-up GNN
B
v LMs of
‘ | GALM |
g

(3 co-training LMs with GNN aggregator

JACE] r

co
Ly

backpropagate gradients to £ (0, Ocny)

(b) A GNN-co-trained GALM: GALM®°

Figure 3: Graph-aware LM pre-training framework (GALM). The LMs are pre-trained on a given large graph corpus either with or without the
incorporation of GNN aggregators (GALM® or GALM, respectively). (a) The pre-training of GALM further trains existing general LMs in a graph-aware

manner. (b) The pre-training of GALM® includes three steps: i. fine-tuning existing general LMs by graph-aware supervision, ii. warming up the GNN

aggregator by fixing the graph-aware pre-trained LMs, iii. co-training the graph-aware pre-trained LMs with the warmed-up GNN aggregator by end-to-end

backpropagating the loss to LMs through GNN.

where h,(f) is the representation of node u at the layer /, and node v
is a neighbor of node u that is connected by an edge with relation r.
The normalization constant can be customized w.r.t. specific tasks,
such as ¢, = || for entity classification task, and ¢, = X, [N} |
for link prediction task. For RGAT, it introduces the attention mech-
anism into RGCN and learns the normalized attention coefficients
for aggregating neighborhood information with attention.

In the vanilla LM+GNN model, the LMs and a GNN aggregator
are simply stacked, and the two processes of encoding text infor-
mation and aggregating neighborhood information are separate.

5 GRAPH-AWARE LM PRE-TRAINING ON A
LARGE GRAPH CORPUS

The pre-training on a large graph corpus aims to capture as much
information as possible that can aid in a variety of downstream
applications. As LMs retain a significant number of parameters
that can understand the text information well, and graph topology
conserves the correlation between entities that can be meaningful
for propagating information, we propose a Graph-Aware LM pre-
training framework (a.k.a. GALM) to combine their advantages.
Pre-training GALM on a large graph corpus can incorporate the
graph information into the fine-tuning of existing pre-trained LMs
that are pre-trained on general texts (such as the BERT model).
Although it is in fact fine-tuning existing pre-trained LMs on a
large graph corpus, we define it as graph-aware LM pre-training
from the perspective of our overall framework. The pipeline of
GALM is displayed in Figure 3.

5.1 Graph-aware LM Pre-training

Graph-aware LM pre-training (GALM) aims to pre-train LMs on a
large graph corpus with its graph information being absorbed in
the LMs. A straightforward way of incorporating the graph infor-
mation into LM pre-training is utilizing graph tasks for supervision.
Figure 3a displays the pipeline of a GALM. Given a large graph
corpus, its attached raw text information is encoded by the gen-
eral pre-trained LMs. As separate LMs are usually employed for
query and product entities in e-commerce scenarios, we introduce
our framework by the way that separate LMs are responsible for
different node types of the large graph corpus in the following.
The output embeddings of LMs are then associated with the graph

5274

topology as the inputs of a graph-task-specific decoder. The full
forward pass is supervised by the graph task and computes the loss

Lyt = £ (T (Bge; f(OLm; Ge))) ©)

where O\ and O, are the parameters of the LMs and the decoder
I' of GALM, and ? is the task-specific loss. In this work, we employ
the typical unsupervised learning task for pre-training on a large
graph corpus, i.e., link prediction. Specifically, the loss for a link
prediction task is computed by

Yeu, = ['(Oge; hu ® ho), (5)
L= D (Yeuo 108(Heu,) + (1= Yey,) log(1 = Gey,,)) » (6)
eun EEErain
where hy, and h, are the output embeddings of the LMs of GALM. In
the backward process, the loss Lyt of the forward propagation will
be backpropagated to the LMs by using the gradients to fine-tune
the parameters of LMs.

To investigate whether the graph-aware pre-training on the large
corpus is effective in promoting multiple applications, we compare
the pre-trained GALM with two baseline models, LMgggr-pase) and
LMBgrr-mzm)s Py applying them to several applications with dif-
ferent tasks. The model LM(gggr-pasg) is initialized from the public
BERT model that is pre-trained on English language in the general
domain using masked language modeling (MLM) objective, and the
model LMgggp-pmpa) i further trained based on LM(pgrr-pase) Using
the text information alone from our large graph corpus (aggregated
node features without graph structures) by MLM. From Table 1,
it is obvious that GALM significantly improves the applications
by comparing to LM(ggrr-pasz) @0d LM(Brrr-mum)> Which indicates
that the graph-aware LM pre-training on a large graph corpus is
capable of capturing useful information that could be beneficial to
downstream applications. Additionally, the finding demonstrates
the key point of GALM that distinguishes our work from the priors,
which focuses on how the pre-training, especially, the graph-aware
LM pre-training acts in helping with multiple applications.

5.2 GNN-based Graph-aware LM Pre-training

Another natural alternative to incorporating graph information
into LMs is co-training LMs with a GNN aggregator. In addition to
the aforementioned way of using graph tasks as the supervision,

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 1: The effect of graph-aware LM pre-training. Due to
company regulations, the results of LM(gggr-gasz) baseline are set to zeros,
and other baselines and GALM models report relative increases from it.

Search-CTR ESCvsI Query2PT

Models
(ROC-AUC) (macro-F1) (macro-F1)

LM(Berr-Bask) 0.00 0.00 0.00
LMBerr-mm) 0.31% -0.24% 19.00%
GALM 2.54% 2.78% 32.88%
GALM©(rgen) 3.00% 3.55% 30.38%
GALMCgat 3.16% 2.95% 32.80%

* The rule is applied to all results evaluated on internal applications of
Amazon-PQ due to the legal issue.

co-training LMs with a GNN aggregator performs the end-to-end
training on pre-trained LMs. However, it is known that the end-to-
end training of LMs with GNNs can be extremely time-consuming,
especially on a large graph corpus. Thus, we choose to only back-
propagate on samples in the co-training process. To accelerate the
overall converging speed, we perform two additional steps before
co-training by infusing LMs with graph information overhead. We
first fine-tune existing general LMs on the large graph corpus by
graph-aware supervision. Then, we warm up the GNN aggregator
to prevent the co-training from settling on undesirable local minima
as the LMs are optimized (also discussed in [13]).

Figure 3b details the pipeline of the GNN-based graph-aware LM
pre-training (we term it as GALM®), which includes the training
of a vanilla GALM (see Section 5.1), warming up a GNN aggregator,
and co-training the pre-trained LMs of GALM with the warmed-up
GNN aggregator. The GNN warming-up step follows LM+GNN (see
Section 4), which fixes the LMs of a vanilla GALM and trains a GNN
aggregator with link prediction. Empirical studies show that a fixed
number of epochs (e.g., 2 or 3) is sufficient for warming up. In the
co-training step, the forward pass computes the loss

Ly = t(T(Oge; f(OLM, ONN; Ge))), (7)

and the backward pass will backpropagate the gradients on some
samples from the GNN aggregator to the LMs.

To study whether the GNN-based graph-aware LM pre-training
will further promote the applications, we adopt two types of GNN
aggregators into GALM®®, RGCN [31] and RGAT [2], and com-
pare the performance of the LMs from GALM® (GALM®°(een) and
GALM®(ea))) to those from the vanilla GALM on applications, as
shown in Table 1. In general, GALM®® performs similarly to the
vanilla GALM on the applications. We observe a slight improvement
of GALM®® on Search-CTR, but it does not show superiority on
ESCvsI and Query2PT. Since GALM®® is comparable to a vanilla
GALM on downstream applications but is more time-consuming
(see Appendix B.1), we deem it more reasonable to choose the
vanilla graph-aware LM pre-training method rather than the GNN-
based one for pre-training on a large graph corpus, considering the
restrictions of computation and time resources.

6 GALM FINE-TUNING ON MULTIPLE GRAPH
APPLICATIONS

We demonstrated the effectiveness of GALM in Section 5 by directly
applying its graph-aware-pre-trained LMs to various applications.

5275

Han Xie et al.

1. Fine-tune LMs of GALM on g;

] — 1
I

2. Train a GNN on g;

GNN]—»l decoder]—I ¥>

aggregator

LMs of
— | GALM

2 i LI

Lft

‘/'\.. r + 3. Train a GNN on g;+
e GNN
— = | aQgregator] — | decoder] _l ﬁ Ly

o?

I

.|Fine-tune the GNN aggregator of GALM on g;+

GNN agg.
of GALM

GNN
aggregator

?
o)~ &~

Figure 4: Fine-tuning strategies. Step 1: Graph-aware LM fine-tuning
on applications using the pre-trained GALM; Step 2: Fine-tuning GALM (or

GALM") on an application by training a GNN aggregator; Step 3: Stitching
an application graph with the large graph and training a GNN aggregator
on the stitched application graph; Step 4: Fine-tuning the GNN aggregator
of GALM on a stitched application graph.

In this section, furthermore, we investigate how the GALM can be
fine-tuned to further improve the performance on multiple graph
applications. As the architecture of a GALM consists of (node-type-
specific) LMs, an optional relation-type-specific GNN aggregator,
and a task-specific decoder, the fine-tuning of a GALM can involve
fine-tuning LMs of GALM, along with training or fine-tuning a
GNN aggregator. The proposed fine-tuning methods of GALM are
illustrated in Figure 4.

6.1 Fine-tuning GALM on Applications

To fine-tune the pre-trained GALM on applications, the proposed
methods can be 1) further fine-tuning the LMs of GALM on graph
applications, and 2) training a new GNN aggregator on application
graphs employing the LMs of GALM.

6.1.1 Graph-aware LM fine-tuning on applications. Similar
to Section 5.1, we adopt the graph information into the LM fine-
tuning on applications (Step 1 in Figure 4). Given an application
graph with raw text, we use the LMs from a pre-trained GALM to
encode the raw text, whose output embeddings are then input into
an application-specific decoder. The forward pass is supervised by
a particular graph task that varies depending on applications. For
example, for an application graph g; with a node classification task,
the loss of its graph-aware LM fine-tuning is computed by

Ly=), -log(softmax(yu, fu));

ue Vitram

®

for an application with an edge classification task, its loss can be
computed using the Equation 5 and 6.

To study how the graph-aware fine-tuning of LMs from GALM
helps various applications, we fine-tune the pre-trained GALM
on applications of Amazon-PQ with diverse graph tasks. The fine-
tuned model is denoted as GALM*. As can be observed from Ta-
ble 2, GALM* slightly improves GALM on Search-CTR and ESCvs],
but significantly outperforms GALM on Query2PT. The reason can
be that Search-CTR and ESCvsI conduct similar link-level tasks
to GALM during its pre-training on a large graph corpus, while

Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications

Query2PT conducts a multi-label node classification task that dif-
fers more from GALM’s pre-training task. Hence, Search-CTR and
ESCvsI can barely gain extra information from fine-tuning LMs of
GALM on the application graph, while Query2PT can still obtain
beneficial new information.

Additionally, although we have shown the direct benefit of pre-
training LMs on a large graph corpus without fine-tuning on the
application graph (Table 1), it might be interesting to see what if
the generic LMs are directly fine-tuned on the application graph. To
this end, we perform graph-aware LM fine-tuning using the public
BERT model on these applications, as denoted by LM

(BERT-BASE)
in Table 2. By comparing GALM* and LM?B , it is evident
ERT-BASE)

that the pre-training on the large graph corpus can benefit the
applications to varying extents depending on the applications.

Table 2: The effect of fine-tuning GALM on applications.

h-CTR E 2PT
Models Search-C SCvsI Query
(ROC-AUC) (macro-F1) (macro-F1)
LM* 1.58% 2.92% 4.89%
(BERT-BASE)
GALM 2.54% 2.78% 32.88%
GALM* 3.04% 3.89% 41.20%
GALMycq 4.46% 4.96% 61.06%
GALM]’:gat 17.49% 10.89% 66.50%

6.1.2 Fine-tuning GALM with GNNs on applications. As the
graph-aware LM fine-tuning on applications can encode the graph
information into LMs to some extent, it is interesting to explore
whether leveraging an extra GNN aggregator to propagate informa-
tion is still desirable. We regard this method of training application-
specific GNN aggregators using LMs of GALM* as fine-tuning
GAaLM with GNNs on applications. In principle, the fine-tuning
can be realized by training a standalone GNN aggregator using
the LMs of GALM* or co-training a GNN aggregator with the LMs.
Considering the trade-offs between utility and efficiency, it is rea-
sonable to choose the former (Step 2 in Figure 4), where we use the
LMs of GALM* to generate embeddings for nodes of an application
graph, and train a GNN aggregator and a task-specific decoder
on the application graph with the generated embeddings as input
features.

To investigate the effect of fine-tuning GALM with GNNs on ap-
plications, we further fine-tune a GALM* with RGCN and RGAT on
the internal applications, as denoted by GALMJ,, and GALM:gat,
respectively. From Table 2, the improvements brought by GALM;‘gcn
and GALM;kgat are significant compared to GALM*, which indicates
that fine-tuning GALM* by training GNN aggregators on applica-
tions is profitable.

6.2 Fine-tuning GALM on Applications Stitched
with the Large Graph Corpus

Apart from fine-tuning GALM with GNNs on applications at the
model level, another way to inject graph information is by stitching
application graphs with the large graph corpus at the data level
(we term the resulting graphs as stitched application graphs, {g;+}).
Since the large graph corpus preserves more edge types and many

5276

KDD ’°23, August 6-10, 2023, Long Beach, CA, USA

more edges that are not included in applications, stitching applica-
tion graphs with the large graph would introduce more neighbors
for nodes in applications, which could benefit their gathering of
neighborhood information.

To stitch an application graph with the large graph corpus, we
align the overlapped nodes between the application graph and the
large graph via internal entity IDs, and then add the connecting
edges of these overlapped nodes that appear in the large graph into
the application graph.

6.2.1 Fine-tuning GALM with GNNs on stitched application
graphs. Similar to Section 6.1.2, fine-tuning GALM with GNNs on
a stitched application graph aims to train a GNN aggregator with
an application-specific decoder on the stitched application graph
utilizing pre-trained LMs of GALM (Step 3 in Figure 4). Here, we
employ LMs of GALM™ to generate node embeddings and train a
GNN aggregator and decoder on the stitched application graph; the
fine-tuned models are GALM;‘gcn+ and GALM:‘gatJf, respectively.
From Table 3, both GALM,,+ and GALM]’;gat
superior to GALM;‘gcn and GALM;‘gat, respectively, which indicates
that applications can benefit from introducing more neighborhood
information from the large graph corpus. On the other hand, the
superiority of GALMy,,,+ over GALM{y,,, implies that the model-
level graph-aware LM pre-training on the large graph corpus using
link prediction is insufficient for capturing all the graph information
from the large graph corpus. Consequently, enhancing the training
of GNN aggregators at data level on the stitched application graphs
with extra edges from the large graph using GALM* can further
improve the performance of applications. However, it remains an
open question whether the graph information of the large graph
corpus can be fully captured through more dedicated designs of
LMs and graph-aware pre-training, which could be explored in
future work.
Table 3: The effect of fine-tuning GALM* with GNNs on

stitched application graphs.

+ are apparently

Search-CTR ESCvsI Query2PT
Models
(ROC-AUC) (macro-F1) (macro-F1)
GALMfgen 4.46% 4.96% 61.06%
GALM;‘gat 17.49% 10.89% 66.50%
GALMjge + 13.38% 8.19% 76.39%
GALM;“gat+ 20.37% 13.35% 80.06%

6.2.2 Fine-tuning GALM with pre-trained GNNs on stitched
application graphs. As discussed in Section 5.2, in the stage of
pre-training on a large graph corpus, besides LMs, GALM can also
pre-train a standalone GNN aggregator or co-training a GNN ag-
gregator with the LMs. Thus, it is natural to investigate whether
the pre-trained GNN aggregator can be fine-tuned on applications,
especially under the consideration of training efficiency. However,
due to the inconsistency of edge types between the applications
and the large graph, the pre-trained GNN aggregator that models
the specific types of edges in the large graph cannot be directly
fine-tuned on the application graphs. A proposed method is to first
include the original edge distribution in applications, that is, to
stitch application graphs with the large graph; then, in addition to

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

inheriting the pre-trained GNN aggregator for the original types of
edges in the large graph, we initialize a new GNN aggregator for
the new types of edges in the application graphs (Step 4 in Figure 4).

The proposed method of fine-tuning the pre-trained GNN aggre-
gator on stitched application graphs seems to be straightforward.
However, it in fact involves complex decision-making— for example,
how to choose a combination of the learning rates for fine-tuning
the pre-trained GNN aggregator and training the newly initialized
GNN aggregator, which would affect how much information from
the pre-training to be retained; how to initialize the new GNN ag-
gregator, where different initializations may impact the optimizing;
and how to aggregate the outputs of the pre-trained and the newly
initialized GNN aggregators, which can be a simple operation (e.g.,
summation, average, and concatenation) or parameterized and to
be learned. We deem these complicated decisions beyond the scope
of this work and will only provide preliminary results and leave
the further explorations in future work.

Albeit the complex decision-making, we attempted some sim-
ple decisions to fine-tune the pre-trained GNN aggregator using
GALM*, i.e., initializing the new GNN aggregator at Xavier’s ran-
dom [6], summing up the outputs of the pre-trained and new initial-
ized GNN aggregators for the same nodes, and tuning the learning
rate of the GNN fine-tuning to tens, hundreds, or thousands of times
smaller than the learning rate of the new GNN aggregator. The
fine-tuned model GALM:‘Eat+ in Table 4 displays the best results
according to our limited attempts based on the aforementioned
simple decisions. In general, the GALM:gat+ model is found compa-
rable but slightly inferior to GALM:gat+ on the stitched application
graphs. On the other hand, we observe that fine-tuning the pre-
trained GNN aggregator of GALM on stitched application graphs
may indeed lead to faster convergence. For example, GALM:‘gat+
converges to 97% of the best performance on Search-CTR after 600
iterations while GALMfgat+ needs 13, 800 iterations to converge to
the same level, where the elapsed time of every iteration is roughly
the same across the two frameworks.

Table 4: The effect of fine-tuning GALM* with pre-trained
GNN s on stitched application graphs.

Models Search-CTR ESCvsI Query2PT
(ROC-AUC) (macro-F1) (macro-F1)

GALMgyt | 2037% 12.99% 80.06%

GALMjg,+ | 19.93% 11.34% 77.25%

7 EXTERNAL AND OVERALL EVALUATIONS
7.1 Public Data Source

To solidify our pre-training and fine-tuning methods, apart from
the Amazon internal dataset Amazon-PQ, we simulate a large graph
corpus and corresponding application graphs using a public dataset,
Amazon Product Reviews! with the time span from May 1996 to July
2014, which we name them together as Product-Reviews dataset.
The original Amazon Product Reviews dataset is large, so we select
some fields of text and down-sample records of items and reviews.

Thttps://jmcauley.ucsd.edu/data/amazon/

5277

Han Xie et al.

7.1.1 Data partitioning. Upon the enormous raw text, we con-
catenate the selected fields “title”, “brand”, “feature”, and “descrip-
tion”, as the raw text of items, and select the field “reviewText” as
the raw text of reviews. We also retain the field “categories” as the
targets of items for an application task of predicting the product
type of items.

The filtered text is then partitioned into a large graph corpus and
multiple applications, based on their node and edge schemas. For
Product-Reviews, the node schema is defined as {“asin”, “
Text”}. In the large graph corpus, the edge schema is {“asin-coview—
asin”, “reviewText-review—asin”, “reviewText-cowrite-reviewText"},
which separately represent that a reviewText reviews an item,
two reviewTexts are written by the same reviewer, and an item
is also viewed when its connected item is reviewed. We simulate
two application graphs according to the real-world applications,
CoPurchase and Product2PT. The new edge type in CoPurchase
and Product2PT is “asin-cobuy-asin”, which represents that a
user bought both the connected two items. Herewith, the appli-
cation of CoPurchase is to predict whether users would buy two
items together, which performs as a link prediction task; and the
Product2PT application is to predict the product type of items,
which performs as a node classification task.

review-

7.1.2 Graph down-sampling. Instead of sampling records di-
rectly from the filtered text, which could lead to largely disturbed
graph structures and extremely sparse edges, we first construct the
large graph and application graphs using all filtered text and then
down-sample the constructed graphs. The sampling begins with
a random set of nodes and samples their neighbors; the sampled
neighbors are then used as the starting set of nodes for sampling
neighbors one hop further. After iterating the process several times,
we extract all edges from the initially constructed graph whose
two-end nodes are within the set of sampled nodes; hereby, the
edges that are connected by the sampled nodes but are not sampled
during the iteration of sampling will be also included in the sam-
pled graph, to avoid generating a collection of disconnected k-hop
networks. The data statistics of the sampled large graph corpus and
application graphs are shown in Table 7 in Appendix A.2.

7.2 Implementation Details

As the original Amazon internal datasets and the public Amazon
Product Reviews dataset are both very large, their preprocessing in-
cluding down-sampling is implemented on distributed Spark frame-
work. The experiments use a cluster of 64 Nvidia Tesla V100 32GB
GPUs. The hyper-parameter settings for models and experiments
are shown in Table 8 in Appendix B.2.

7.3 Results on Internal and Public Datasets

From the previous observations, fine-tuning GALM with GNNs can
dramatically improve the performance of applications. Thus, we
select the better model of GALM;gat and implement different fine-
tuning methods upon it, to obtain an overall comparison on both
internal Amazon-PQ and public Product-Reviews datasets (see Ta-
ble 5). The baselines are implemented as the backbone LM+GNN
using public pre-trained LMs, and all the GNN aggregators incorpo-
rate RGAT. The models GALM’:gat and GALM’;gat+ are as described

https://jmcauley.ucsd.edu/data/amazon/

Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications

Table 5: The overall comparison of models using GALM;g,;
on Amazon-PQ and Product-Reviews. The LMs in models without a

wxn

are not fine-tuned on applications.

Amazon-PQ Product-Reviews
Models Search-CTR ESCvsI Query2PT | CoPurchase Product2PT
(ROC-AUC) ~ (macro-F1) (macro-F1) (MRR) (macro-F1)
LM(Brrr-pass) +GNN (rgat) 15.60% 8.51% 39.56% 0.1941 0.7038
*

M(BERT_BA5E> +GNN“ga[> 15.47% 6.49% 44.84% 0.3230 0.7479
GALM;gat 17.30% 10.39% 64.03% 0.3461 0.7317
GALM:gal 17.49% 10.89% 66.50% 0.3474 0.7491
GALM:gm+ 20.37% 13.35% 80.06% 0.4542 0.7813

in Section 6, which fine-tune the pre-trained LMs of GALM on appli-
cations in a graph-aware manner and then train GNN aggregators
on application graphs and stitched application graphs, respectively,
while GALM;gyt uses the pre-trained LMs of GALM without further
fine-tuning on application graphs.

From the results, it further confirms that the graph-aware LM
pre-training on a large graph corpus and fine-tuning on applications
can be beneficial to these applications with various tasks, as can be
observed where most GALM variants perform significantly better
on all five applications in comparison to the LM(gggr-pass) variants.
Besides, the superiority of GALM;‘gat+ over GALM]’;gat demonstrates
the effectiveness of introducing more neighborhood information
of the large graph corpus to applications at the data level, which
can assist the information propagation of GNN aggregators on
applications with the extra information that is not fully captured by
the model-level graph-aware pre-training. It is also noticeable that
when fine-tuning GALM with GNN aggregators on applications, it
could be unnecessary to directly fine-tune the LMs of GALM on
application graphs, as can be observed where GALM;‘gat performs
similarly to GALMyg,t. The reason could be that the capacity of
GNN aggregators is sufficient for capturing essential information
of the application graphs, thus, training GNN aggregators using
GALM* does not provide much additional gain over GALM.

7.4 Additional Analysis

7.4.1 Significance test. Regarding the overall comparison in Ta-
ble 5, we conduct a significance analysis to confirm the signifi-
cance of the superiority of our proposed frameworks compared
to the baselines. We run five repetitions on the public application
Product2PT for each model (the original results are in Table 9 in
Appendix B.3), and then perform a one-sided T-test [33] between
each pair of models. By one-sided T-test, we test whether one model
performs significantly better than another model rather than only
testing whether they are significantly different. Figure 5a displays
the heatmap of p-values from the pair-wise one-sided T-tests. Ac-
cording to the heatmap, most of the comparison is significant as
the p-value is less than 0.05. A noticeable result is the p-value of 1.0

between LMZBERT—BASE) +GNN (gat) and GALMrgat, which indicates

that the alternative hypothesis that GALMgy¢ is significantly better

than LMTBERT-BASE) +GNN(1gqt) is rejected. It can be because the

Product2PT dataset is relatively small and simple (with a single
type of nodes and edges), and the fine-tuning of public pre-trained
LMs on it combing with training a GNN aggregator is capable to cap-

. . . *
ture adequate information for its task, so LM(BERT-BASE) +GNN (rgat)

can achieve a comparable result to the GALM’:gat model.

5278

KDD ’°23, August 6-10, 2023, Long Beach, CA, USA

LM(bert-base)
+GNN(rgat) — GALM

GALM*

I

\LOOD 0.00 0.00 0.00

LM*(bert-base) -
+GNN(rgat) 0:02580.00 geo = gﬁmf?;l i |]
06 p
50 |
GALMrgat S0 0.00 0.00 2 GALMrgat+ J
B 40 = GALM*rgat+ ||
-0.4 € J
GALM*rgat 0.00 0.02 0.00 MUE(N 0.00 £30 ||
0.2 & _ J ||
GALM*rgat+ 0.00 0.00 0.00 0.00 UL B | |
N lz- i _.a L
@@"@0 &‘,zs';&\\@ & & Search-CTR ESCusl Query2PT
O S G S (ye‘ Application
W ¥

(b) Model performance
Amazon-PQ applications.

on
(a) The p-values on Product2PT.

Figure 5: Additional analysis. (a) Significant test. The p-values are
calculated using one-sided pair-wise T-tests (the alternative hypothesis is
that the model performs worse than the model below it or on the right side
of it). (b) Ablation studies. The metrics are ROC-AUC for Search-CTR, and
macro-F1 for ESCvsI and Query2PT.

7.4.2 Ablation studies. To investigate the effects of different
fine-tuning methods with the pre-trained GALM, we discard one
fine-tuning strategy from GALM;*gat+ each time and compare the
resulting models. The results are visualized in Figure 5b. It can be
seen that fine-tuning LMs of GALM on applications (with a super-
script *) has an effect when only LMs are employed (blue and yellow
bars). When adopting the strategy of training a GNN aggregator
(the four bars on the right), the effect of fine-tuning LMs on appli-
cations can be diminished (green v.s. red, and purple v.s. brown).
Furthermore, integrating GNN aggregators in the fine-tuning stage
can considerably improve the performance of applications, and its
effect is greater than the effect of fine-tuning LMs on applications
(as can be seen in the figure where the green bar rises steeply from
the yellow bar, and the gap is more prominent than the one be-
tween the blue and yellow bars). Regarding fine-tuning GALM on
stitched application graphs, as it will benefit from employing GNN
aggregators with more neighborhood information, it can further
promote the performance of applications compared to fine-tuning
GALM with GNNs on sole applications themselves.

8 CONCLUSION

The work studies how to leverage a large graph corpus to facili-
tate multiple downstream graph applications whose edge schemas
can be distinct and tasks can vary. To approach this problem, we
propose a graph-aware language model pre-training framework
GALM and advanced variants by incorporating more fine-tuning
strategies. The extensive experiments demonstrate the effectiveness
of our proposed framework and fine-tuning methods. Moreover, we
provide insights into the empirical results and additional analysis. A
limitation of the work is that we only experiment with the language
model of BERT and have not attempted other powerful LMs, which
is mainly due to the currently more developed large-scale training
pipelines based on BERT in the industry. Besides, we also elicit two
open questions in the paper: whether more delicate designs of the
pre-training task and language models can fully capture the large
graph corpus information, and how to resolve the complex decision-
making in fine-tuning GALM with pre-trained GNNs. These can all
lead to profitable future studies.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

REFERENCES

(1]

[10]

[11]

[12

[13]

[14

=
i)

[16]

[17]

(18]

[19

[20]

[21

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In Advances in neural
information processing systems.

Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y Hammerla. 2019.
Relational graph attention networks. arXiv preprint arXiv:1904.05811 (2019).

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Ol-
gica Milenkovic, and Inderjit S Dhillon. 2022. Node Feature Extraction by Self-
Supervised Multi-scale Neighborhood Prediction. In International Conference on
Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
arXiv preprint arXiv:1810.04805.

Yang Fang, Xiang Zhao, Yifan Chen, Weidong Xiao, and Maarten de Rijke. 2020.
Pre-Trained Models for Heterogeneous Information Networks. arXiv preprint
arXiv:2007.03184 (2020).

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
Xueting Han, Zhenhuan Huang, Bang An, and Jing Bai. 2021. Adaptive transfer
learning on graph neural networks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining.

Weihua Hu*, Bowen Liu*, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay
Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Net-
works. In International Conference on Learning Representations.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of the web conference 2020.

Dasol Hwang, Jinyoung Park, Sunyoung Kwon, KyungMin Kim, Jung-Woo Ha,
and Hyunwoo J Kim. 2020. Self-supervised auxiliary learning with meta-paths
for heterogeneous graphs. In Advances in Neural Information Processing Systems.
Vassilis N Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi Xu, Belinda
Zeng, Trishul Chilimbi, and George Karypis. 2022. Efficient and effective training
of language and graph neural network models. arXiv preprint arXiv:2206.10781
(2022).

Xungqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang,. 2021.
Pre-training on large-scale heterogeneous graph. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining.

Xungqiang Jiang, Yuanfu Lu, Yuan Fang, and Chuan Shi. 2021. Contrastive pre-
training of gnns on heterogeneous graphs. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management.

Pei Ke, Haozhe Ji, Yu Ran, Xin Cui, Liwei Wang, Linfeng Song, Xiaoyan Zhu,
and Minlie Huang. 2021. JointGT: Graph-Text Joint Representation Learning
for Text Generation from Knowledge Graphs. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021.

Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.

Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi
Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. 2021. Adsgnn: Behavior-graph
augmented relevance modeling in sponsored search. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Yuanfu Lu, Xungiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-
train graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence.

5279

[22]

[23]

&
=

™
&,

[29

(30]

[31

®
=

'©
&

[39

[40

N
=

[42

[43

[44

Han Xie et al.

Yuxian Meng, Shi Zong, Xiaoya Li, Xiaofei Sun, Tianwei Zhang, Fei Wu, and
Jiwei Li. 2022. GNN-LM: Language Modeling based on Global Contexts via GNN.
In International Conference on Learning Representations.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu
Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heinz, and Dan Roth. 2021. Recent
advances in natural language processing via large pre-trained language models:
A survey. arXiv preprint arXiv:2111.01243 (2021).

OpenAl 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023).
Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. (2019).
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research (2020).

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale
molecular data. In Advances in Neural Information Processing Systems.

Corby Rosset, Chenyan Xiong, Minh Phan, Xia Song, Paul Bennett, and Saurabh
Tiwary. 2020. Knowledge-aware language model pretraining. arXiv preprint
arXiv:2007.00655 (2020).

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3-7, 2018, Proceedings 15.

Tao Shen, Yi Mao, Pengcheng He, Guodong Long, Adam Trischler, and Weizhu
Chen. 2020. Exploiting Structured Knowledge in Text via Graph-Guided Repre-
sentation Learning. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Student. 1908. The probable error of a mean. Biometrika (1908).

Ruoxi Sun, Hanjun Dai, and Adams Wei Yu. 2022. Does GNN Pretraining Help
Molecular Representation?. In Advances in Neural Information Processing Systems.
Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu,
Juanzi Li, and Jian Tang. 2021. KEPLER: A Unified Model for Knowledge Embed-
ding and Pre-trained Language Representation. Transactions of the Association
for Computational Linguistics (2021).

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.
2019. Heterogeneous graph attention network. In The world wide web conference.
Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous network representation learning: A unified framework with survey and
benchmark. IEEE Transactions on Knowledge and Data Engineering (2020).
Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. In Advances in neural information processing systems.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional networks
for text classification. In Proceedings of the Thirty-Third AAAI Conference on Arti-
ficial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence
Conference and Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D
Manning, Percy Liang, and Jure Leskovec. 2022. Deep Bidirectional Language-
Knowledge Graph Pretraining. In Advances in Neural Information Processing
Systems.

Donghan Yu, Chenguang Zhu, Yiming Yang, and Michael Zeng. 2022. Jaket: Joint
pre-training of knowledge graph and language understanding. In Proceedings of
the AAAI Conference on Artificial Intelligence.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tiangi
Yang, Liangjie Zhang, Ruofei Zhang, and Huasha Zhao. 2021. Textgnn: Improving
text encoder via graph neural network in sponsored search. In Proceedings of the
Web Conference 2021.

Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han.
2021. Transfer learning of graph neural networks with ego-graph information
maximization. In Advances in Neural Information Processing Systems.

Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications KDD ’23, August 6-10, 2023, Long Beach, CA, USA

A DATA STATISTICS
A.1 Data Statistics of Amazon-PQ

Table 6: Statistics of internal datasets of Amazon-PQ (including sub-sampled a large graph corpus for pre-training and three
application graphs).

Nodes

A -p
mazon-PQ product query

Edges (query — product)

The large graph corpus (sub-sampled) ‘ 1,719,361 11,165,437 ‘ add: 56,087, 935, click: 147, 985, 529, consume: 252, 818, purchase: 25, 861, 965

Search-CTR 65,751 1,852,895 ads-click: 6, 385,003
ESCvsI 1,660,560 209,874 match: 2, 548, 873
Query2PT 1,121,831 552,789 click: 10, 379, 242

A.2 Data Statistics of Product-Reviews

Table 7: Statistics of public datasets of Product-Reviews (including a large graph corpus and two applications).

Nodes

Product-Reviews . .
asin reviewText

Edges

The large graph ‘ 2,781,996 2,590,064 asin—coview—asin: 17, 491, 876, reviewText-review—-asin: 2, 805, 401,

corpus reviewText—cowrite-reviewText: 35, 769, 994
CoPurchase 424,716 13,032 asin—cobuy-asin: 1, 161, 159, reviewText-review—asin: 278, 063
Product2PT 694,524 - asin—cobuy-asin: 1, 738, 293

B MORE EXPERIMENTAL DETAILS
B.1 Elapsed Time of Pre-training Strategies

Due to the internal legal policy, we could only show relative throughput performances between the two pre-training methods.
Graph-aware LM Pre-training. The time elapsed for graph-aware LM pre-training is 100%.

GNN-based Graph-aware LM Pre-training. The time elapsed for GNN-based graph-aware LM pre-training is 977% (100% for graph-
aware LM pre-training, 8% for GNN warming up, and 869% for co-training LMs with a GNN aggregator). Even if the graph-aware LM
pre-training is not trained till 100%, the total elapsed time of GALM® is more than 877%.

B.2 Hyper-parameter Setting

Table 8: Hyper-parameters for models and experiments.

Amazon-PQ Product-Reviews
Category Hyperparameter The large graph Search-CTR ESCvsI Query?2PT The large graph CoPurchase Product2PT
corpus corpus
Number of GNN aggregator layers 1-2 1 1 1 1-2 1 1
. Dimension of GNN aggregator hidden layers 256 256 256 256 256 256 256
Model architecture Number of attention heads of RGAT 4 4 4 4 4 4 4
Type of decoders 1-layer MLP 1-layer MLP 1-layer MLP 1-layer MLP 1-layer MLP 1-layer MLP 1-layer MLP
Learning rate of parameters of LMs le-8 le-7 le-6 le-7 le-8 le-7 le-7
Learning rate of parameters of GNNs S5e-4 5e-4 le-4 5e-4 5e-4 S5e-4 S5e-4
Experimental setups Optimizer Adam Adam Adam Adam Adam Adam Adam
P UPS " Batch size for training 512 512 512 512 512 512 512
Batch size for evaluation 1024 1024 1024 1024 1024 1024 1024
Max number of tokens 256 256 256 256 256 256 256

5280

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

B.3 Original Results for Significant Analysis

Han Xie et al.

Table 9: The original results (micro-F1 and accuracy) of five repetitions on Product2PT for significant analysis.

Models Product2PT
(macro-F1) (accuracy)
LM(BERT-BASE) +GNN(rgat) 0.7038 0.7044 0.6977 0.7051 0.7014 | 0.8133 0.8127 0.8149 0.8101 0.8108
LM, +GNN(t) 0.7479 0.7486 0.7455 0.7455 0.7458 | 0.8435 0.8424 0.8406 0.8416 0.8415
(BERT-BASE) rgal

GALMrgat 0.7317 0.7314 0.7319 0.7287 0.7300 | 0.8311 0.8330 0.8321 0.8311 0.8302
GALI\/I:‘gat 0.7491 0.7490 0.7449 0.7473 0.7466 | 0.8427 0.8437 0.8436 0.8427 0.8437
GALM’rkgat+ 0.7813 0.7838 0.7838 0.7831 0.7856 | 0.8676 0.8660 0.8671 0.8672 0.8670

5281

	Abstract
	1 Introduction
	2 Related Works
	2.1 Language Modeling with Graphs
	2.2 Pre-training on Graphs

	3 Preliminaries
	3.1 Problem Formulation
	3.2 The Large Graph Corpus
	3.3 Multiple Applications

	4 LM+GNN: The Backbone of Our Proposed Framework
	5 Graph-aware LM Pre-training on a Large Graph Corpus
	5.1 Graph-aware LM Pre-training
	5.2 GNN-based Graph-aware LM Pre-training

	6 GaLM Fine-tuning on Multiple Graph Applications
	6.1 Fine-tuning GaLM on Applications
	6.2 Fine-tuning GaLM on Applications Stitched with the Large Graph Corpus

	7 External and Overall Evaluations
	7.1 Public Data Source
	7.2 Implementation Details
	7.3 Results on Internal and Public Datasets
	7.4 Additional Analysis

	8 Conclusion
	References
	A Data Statistics
	A.1 Data Statistics of Amazon-PQ
	A.2 Data Statistics of Product-Reviews

	B More Experimental Details
	B.1 Elapsed Time of Pre-training Strategies
	B.2 Hyper-parameter Setting
	B.3 Original Results for Significant Analysis

